A time-series biclustering algorithm for revealing co-regulated genes

Ya Zhang, H. Zha, Chao-Hsien Chu
{"title":"A time-series biclustering algorithm for revealing co-regulated genes","authors":"Ya Zhang, H. Zha, Chao-Hsien Chu","doi":"10.1109/ITCC.2005.46","DOIUrl":null,"url":null,"abstract":"Although existing bicluster algorithms claimed to be able to discover co-regulated genes under a subset of given experiment conditions, they ignore the inherent sequential relationship between crucial time points and thus are not applicable to analyze time-series gene expression data. A simple and effective deletion-based algorithm, using the mean squared residue score as a measure, was developed to bicluster time-series gene expression data. While enforcing a threshold value for the score, the algorithm alternately eliminates genes and time points according to their correlation to the bicluster. To ensure the time locality, only the starting and ending points in the time interval are eligible for deletion. As a result, the number of genes and the length of time interval are simultaneously maximized. Our experimental results shown that the proposed method is capable of identifying co-regulated genes characterized by partial time-course data that previous methods failed to discover.","PeriodicalId":326887,"journal":{"name":"International Conference on Information Technology: Coding and Computing (ITCC'05) - Volume II","volume":"19 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"67","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Information Technology: Coding and Computing (ITCC'05) - Volume II","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITCC.2005.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 67

Abstract

Although existing bicluster algorithms claimed to be able to discover co-regulated genes under a subset of given experiment conditions, they ignore the inherent sequential relationship between crucial time points and thus are not applicable to analyze time-series gene expression data. A simple and effective deletion-based algorithm, using the mean squared residue score as a measure, was developed to bicluster time-series gene expression data. While enforcing a threshold value for the score, the algorithm alternately eliminates genes and time points according to their correlation to the bicluster. To ensure the time locality, only the starting and ending points in the time interval are eligible for deletion. As a result, the number of genes and the length of time interval are simultaneously maximized. Our experimental results shown that the proposed method is capable of identifying co-regulated genes characterized by partial time-course data that previous methods failed to discover.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示共调控基因的时间序列双聚类算法
虽然现有的双聚类算法声称能够在给定实验条件的子集下发现共调控基因,但它们忽略了关键时间点之间固有的时序关系,因此不适用于分析时间序列基因表达数据。提出了一种简单有效的基于删除的算法,采用均方残差评分作为度量,对时间序列基因表达数据进行双聚类。在为分数执行阈值的同时,该算法根据基因和时间点与双聚类的相关性交替消除基因和时间点。为了保证时间的局部性,只有时间间隔内的起始点和结束点可以被删除。因此,基因的数量和时间间隔的长度同时最大化。我们的实验结果表明,所提出的方法能够识别出以前的方法未能发现的部分时间过程数据特征的共调控基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Component metadata management and publication for the grid A mathematical investigation on retrieval performance evaluation measures of information retrieval algorithm Single-parameter blackjack betting systems inspired by scatter search A time-series biclustering algorithm for revealing co-regulated genes A methodology for evaluating agent toolkits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1