Oguz Kaan Koksal, R. Temelli, Huseyin Ozkan, O. Gurbuz
{"title":"Markov Model Based Traffic Classification with Multiple Features","authors":"Oguz Kaan Koksal, R. Temelli, Huseyin Ozkan, O. Gurbuz","doi":"10.1109/BalkanCom55633.2022.9900541","DOIUrl":null,"url":null,"abstract":"Traffic prioritization has recently become more critical and crucial for home Wi-Fi networks due to the increased number of connected devices and applications. While some of these applications are delay sensitive, some have high throughput requirements. Quality of Service (QoS) in Wi-Fi is achieved via differentiation and prioritization of traffic streams, which can be performed successfully as long as the packets can be classified with high precision. As a solution for this problem, this paper presents a new Discrete Time Markov Chain-based traffic classification algorithm, which exploits a multidimensional feature set, named as k-Nearest Markov Component with 3 Dimensions (kNMC-3D). Considering results obtained on two different datasets with current, most popular multimedia applications from different categories, we present the performance of the proposed algorithm, kNMC-3D in comparison to kNMC, two feature extraction based machine learning techniques, Support Vector Machines (SVM) and Random Forest (RF) and a deep learning approach, Auto Encoder with RF (AE+RF). It is shown that kNMC-3D achieves 84.93% and 90.73% accuracy at the application level, 91.13% and 99.17% accuracy at category level on our dataset and a benchmark dataset, respectively. Outperforming the existing methods that focus mainly on feature extraction, kNMC-3D prevents information loss by making use of sequentiality in the traffic, while it improves kNMC by considering multiple features, number of bits, inter-arrival times and number of packets.","PeriodicalId":114443,"journal":{"name":"2022 International Balkan Conference on Communications and Networking (BalkanCom)","volume":"8 24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Balkan Conference on Communications and Networking (BalkanCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BalkanCom55633.2022.9900541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Traffic prioritization has recently become more critical and crucial for home Wi-Fi networks due to the increased number of connected devices and applications. While some of these applications are delay sensitive, some have high throughput requirements. Quality of Service (QoS) in Wi-Fi is achieved via differentiation and prioritization of traffic streams, which can be performed successfully as long as the packets can be classified with high precision. As a solution for this problem, this paper presents a new Discrete Time Markov Chain-based traffic classification algorithm, which exploits a multidimensional feature set, named as k-Nearest Markov Component with 3 Dimensions (kNMC-3D). Considering results obtained on two different datasets with current, most popular multimedia applications from different categories, we present the performance of the proposed algorithm, kNMC-3D in comparison to kNMC, two feature extraction based machine learning techniques, Support Vector Machines (SVM) and Random Forest (RF) and a deep learning approach, Auto Encoder with RF (AE+RF). It is shown that kNMC-3D achieves 84.93% and 90.73% accuracy at the application level, 91.13% and 99.17% accuracy at category level on our dataset and a benchmark dataset, respectively. Outperforming the existing methods that focus mainly on feature extraction, kNMC-3D prevents information loss by making use of sequentiality in the traffic, while it improves kNMC by considering multiple features, number of bits, inter-arrival times and number of packets.