Automatically Discovering Hierarchies in Multi-agent Reinforcement Learning

Xiaobei Cheng, Jing Shen, Haibo Liu, Guochang Gu, Guoyin Zhang
{"title":"Automatically Discovering Hierarchies in Multi-agent Reinforcement Learning","authors":"Xiaobei Cheng, Jing Shen, Haibo Liu, Guochang Gu, Guoyin Zhang","doi":"10.1109/ICICSE.2008.32","DOIUrl":null,"url":null,"abstract":"It is difficult to automatically discovering hierarchies in multi-agent reinforcement learning. We consider an immune clustering approach for automatically discovering hierarchies in option learning framework. The leading agent generates an undirected edge-weighted topological graph of the environment state transitions based on the environment information explored by all agents. An immune clustering algorithm is then used to partition the state space. A second immune response algorithm is used to update the clusters when a new state being encountered later. Local strategies for reaching the different parts of the space are learned distributedly and added to the model in a form of options.","PeriodicalId":333889,"journal":{"name":"2008 International Conference on Internet Computing in Science and Engineering","volume":"3 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Internet Computing in Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICSE.2008.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is difficult to automatically discovering hierarchies in multi-agent reinforcement learning. We consider an immune clustering approach for automatically discovering hierarchies in option learning framework. The leading agent generates an undirected edge-weighted topological graph of the environment state transitions based on the environment information explored by all agents. An immune clustering algorithm is then used to partition the state space. A second immune response algorithm is used to update the clusters when a new state being encountered later. Local strategies for reaching the different parts of the space are learned distributedly and added to the model in a form of options.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多智能体强化学习中的自动发现层次
在多智能体强化学习中,很难自动发现层次结构。我们考虑了一种免疫聚类方法来自动发现期权学习框架中的层次结构。领先的智能体根据所有智能体探索的环境信息生成环境状态转换的无向边加权拓扑图。然后利用免疫聚类算法对状态空间进行划分。第二种免疫反应算法用于在稍后遇到新状态时更新集群。到达空间不同部分的局部策略是分布式学习的,并以选项的形式添加到模型中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hierarchical Small-World P2P Networks Forecasting Day Ahead Spot Electricity Prices Based on GASVM Automatically Discovering Hierarchies in Multi-agent Reinforcement Learning A Fast Multi-level Algorithm for Drawing Large Undirected Graphs Minimal Trellises for Two Classes of Linear Codes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1