Towards fitting a 3D dense facial model to a 2D image: A landmark-free approach

Yuhang Wu, Xiang Xu, S. Shah, I. Kakadiaris
{"title":"Towards fitting a 3D dense facial model to a 2D image: A landmark-free approach","authors":"Yuhang Wu, Xiang Xu, S. Shah, I. Kakadiaris","doi":"10.1109/BTAS.2015.7358799","DOIUrl":null,"url":null,"abstract":"Head pose estimation helps to align a 3D face model to a 2D image, which is critical to research requiring dense 2D-to-2D or 3D-to-2D correspondence. Traditional pose estimation relies strongly on the accuracy of landmarks, so it is sensitive to missing or incorrect landmarks. In this paper, we propose a landmark-free approach to estimate the pose projection matrix. The method can be used to estimate this matrix in unconstrained scenarios and we demonstrate its effectiveness through multiple head pose estimation experiments.","PeriodicalId":404972,"journal":{"name":"2015 IEEE 7th International Conference on Biometrics Theory, Applications and Systems (BTAS)","volume":"30 14","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 7th International Conference on Biometrics Theory, Applications and Systems (BTAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2015.7358799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Head pose estimation helps to align a 3D face model to a 2D image, which is critical to research requiring dense 2D-to-2D or 3D-to-2D correspondence. Traditional pose estimation relies strongly on the accuracy of landmarks, so it is sensitive to missing or incorrect landmarks. In this paper, we propose a landmark-free approach to estimate the pose projection matrix. The method can be used to estimate this matrix in unconstrained scenarios and we demonstrate its effectiveness through multiple head pose estimation experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
拟合三维密集面部模型到二维图像:无地标方法
头部姿态估计有助于将3D面部模型与2D图像对齐,这对于需要密集2D到2D或3D到2D对应的研究至关重要。传统的姿态估计强烈依赖于地标的准确性,因此对缺失或错误的地标很敏感。在本文中,我们提出了一种无地标的姿态投影矩阵估计方法。该方法可用于在无约束情况下估计该矩阵,并通过多个头姿估计实验证明了其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards fitting a 3D dense facial model to a 2D image: A landmark-free approach Combining 3D and 2D for less constrained periocular recognition Pace independent mobile gait biometrics Iris imaging in visible spectrum using white LED On smartphone camera based fingerphoto authentication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1