Enriching Cold Start Personalized Language Model Using Social Network Information

Yu-Yang Huang, Rui Yan, Tsung-Ting Kuo, Shou-de Lin
{"title":"Enriching Cold Start Personalized Language Model Using Social Network Information","authors":"Yu-Yang Huang, Rui Yan, Tsung-Ting Kuo, Shou-de Lin","doi":"10.3115/v1/P14-2100","DOIUrl":null,"url":null,"abstract":"We introduce a generalized framework to enrich the personalized language models for cold start users. The cold start problem is solved with content written by friends on social network services. Our framework consists of a mixture language model, whose mixture weights are es- timated with a factor graph. The factor graph is used to incorporate prior knowledge and heuris- tics to identify the most appropriate weights. The intrinsic and extrinsic experiments show significant improvement on cold start users.","PeriodicalId":436300,"journal":{"name":"Int. J. Comput. Linguistics Chin. Lang. Process.","volume":"56 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Linguistics Chin. Lang. Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/v1/P14-2100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

We introduce a generalized framework to enrich the personalized language models for cold start users. The cold start problem is solved with content written by friends on social network services. Our framework consists of a mixture language model, whose mixture weights are es- timated with a factor graph. The factor graph is used to incorporate prior knowledge and heuris- tics to identify the most appropriate weights. The intrinsic and extrinsic experiments show significant improvement on cold start users.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用社会网络信息丰富冷启动个性化语言模型
我们引入了一个通用的框架来丰富冷启动用户的个性化语言模型。通过朋友在社交网络服务上写的内容来解决冷启动问题。该框架由一个混合语言模型组成,混合语言模型的混合权重用因子图估计。因子图结合了先验知识和启发式方法来确定最合适的权重。内部和外部实验表明,冷启动用户显著改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enriching Cold Start Personalized Language Model Using Social Network Information Detecting and Correcting Syntactic Errors in Machine Translation Using Feature-Based Lexicalized Tree Adjoining Grammars TQDL: Integrated Models for Cross-Language Document Retrieval Evaluation of TTS Systems in Intelligibility and Comprehension Tasks: a Case Study of HTS-2008 and Multisyn Synthesizers Effects of Combining Bilingual and Collocational Information on Translation of English and Chinese Verb-Noun Pairs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1