The Effect of an Evaporative Cooler on the Thermal Performance of Passive Ventilation System Coupled with EAHE: An Experimental Investigation

Abbas Ghafouri, A. Jubear
{"title":"The Effect of an Evaporative Cooler on the Thermal Performance of Passive Ventilation System Coupled with EAHE: An Experimental Investigation","authors":"Abbas Ghafouri, A. Jubear","doi":"10.31185/ejuow.vol10.iss1.234","DOIUrl":null,"url":null,"abstract":"An experimental study of a two-storey structure with a passive ventilation system is conducted in August, with the severe summer environment of Kut, Iraq. The experimental model consists of a solar chimney combined with a hybrid cooling system comprised of an Earth-air heat exchanger and an evaporative cooler. Each storey has a size of 1 m3, while the dimensions of the vertical solar chimney were 3m height, 1m width and 0.3m depth. The dimensions of the evaporative cooler were (0.3 * 0.3 * 0.6) m3; it has a two-nozzle water spray system and a low-power fan with a speed of 0.8 m/s. The Earth-air heat exchanger was 17 m long, 10.2 cm in diameter and 3 m deep under each floor. Two instances were investigated with and without EV for two separate daytimes (2-8-2021 and (3-8-2021). The findings revealed that EV increases the relative humidity inside each storey and enhances the thermal comfort rate. Based on recorded data, the relative humidity rate ranged from 35% to 42%, contrasted to the exterior relative humidity, which did not surpass 13%. In addition, the EV assisted in lowering the indoor temperature of each storey by 4 °C. Finally, due to the high solar radiation at the Kut city location in Iraq, the passive ventilation rates for the solar chimney were satisfactory for both storeys.","PeriodicalId":184256,"journal":{"name":"Wasit Journal of Engineering Sciences","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wasit Journal of Engineering Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31185/ejuow.vol10.iss1.234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An experimental study of a two-storey structure with a passive ventilation system is conducted in August, with the severe summer environment of Kut, Iraq. The experimental model consists of a solar chimney combined with a hybrid cooling system comprised of an Earth-air heat exchanger and an evaporative cooler. Each storey has a size of 1 m3, while the dimensions of the vertical solar chimney were 3m height, 1m width and 0.3m depth. The dimensions of the evaporative cooler were (0.3 * 0.3 * 0.6) m3; it has a two-nozzle water spray system and a low-power fan with a speed of 0.8 m/s. The Earth-air heat exchanger was 17 m long, 10.2 cm in diameter and 3 m deep under each floor. Two instances were investigated with and without EV for two separate daytimes (2-8-2021 and (3-8-2021). The findings revealed that EV increases the relative humidity inside each storey and enhances the thermal comfort rate. Based on recorded data, the relative humidity rate ranged from 35% to 42%, contrasted to the exterior relative humidity, which did not surpass 13%. In addition, the EV assisted in lowering the indoor temperature of each storey by 4 °C. Finally, due to the high solar radiation at the Kut city location in Iraq, the passive ventilation rates for the solar chimney were satisfactory for both storeys.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蒸发冷却器对被动通风系统热工性能影响的实验研究
8月,在伊拉克库特的夏季恶劣环境下,对一幢两层楼房进行了被动式通风系统的试验研究。实验模型由一个太阳能烟囱和一个混合冷却系统组成,该系统由一个地球-空气热交换器和一个蒸发冷却器组成。每层的尺寸为1立方米,而垂直太阳能烟囱的尺寸为3米高,1米宽,0.3米深。蒸发冷却器尺寸为(0.3 * 0.3 * 0.6)m3;双喷嘴喷水系统,小功率风机,转速0.8 m/s。地球-空气热交换器长17米,直径10.2厘米,每层深3米。在两个不同的白天(2021年8月2日和2021年8月3日)对两个实例进行了有和没有EV的调查。研究结果表明,电动汽车增加了每层室内的相对湿度,提高了热舒适度。根据实测数据,室内相对湿度为35% ~ 42%,室外相对湿度不超过13%。此外,电动汽车还将每层的室内温度降低了4°C。最后,由于伊拉克库特市位置的太阳辐射高,太阳能烟囱的被动通风率对两层都是令人满意的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient Dye Removal and Water Treatment Feasibility Assessment for Iraq's Industrial Sector: A Case Study on Terasil Blue Dye Treatment Using Inverse Fluidized Bed and Adsorption A Deep Learning Approach to Evaluating SISO-OFDM Channel Equalization Numerical Investigation of the Impact of Subcooling Inlet on Water Flow Boiling Heat Transfer Through a Microchannel Effect of Metal Foam’s Volume on the Performance of a Double Pipe heat exchanger Flow field and heat transfer characteristics in dimple pipe with different shape of dimples
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1