Artificial Neural Networks for ranging of passive UHF RFID tags

M. Agatonovic, E. Di Giampaolo, P. Tognolatti, B. Milovanovic
{"title":"Artificial Neural Networks for ranging of passive UHF RFID tags","authors":"M. Agatonovic, E. Di Giampaolo, P. Tognolatti, B. Milovanovic","doi":"10.1109/TELSKS.2013.6704428","DOIUrl":null,"url":null,"abstract":"Ranging of passive Ultra High Frequency (UHF) Radio Frequency Identification (RFID) tags in indoor environments is a topical issue nowadays. Due to complexity of such an environment, there is no effective solution to this problem. In this paper we investigate application of Artificial Neural Networks (ANNs) in indoor localization of passive UHF RFID tags. Namely, we estimate distance between a reader antenna and a couple of tags attached to an item, using nonlinear mapping that ANNs perform between measured values of the Received Signal Strength Indicator (RSSI), turn on power and phase on the one hand, and the distance on the other. The proposed ANN model calculates distance with an average error of 7.31 cm.","PeriodicalId":144044,"journal":{"name":"2013 11th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services (TELSIKS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 11th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services (TELSIKS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELSKS.2013.6704428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Ranging of passive Ultra High Frequency (UHF) Radio Frequency Identification (RFID) tags in indoor environments is a topical issue nowadays. Due to complexity of such an environment, there is no effective solution to this problem. In this paper we investigate application of Artificial Neural Networks (ANNs) in indoor localization of passive UHF RFID tags. Namely, we estimate distance between a reader antenna and a couple of tags attached to an item, using nonlinear mapping that ANNs perform between measured values of the Received Signal Strength Indicator (RSSI), turn on power and phase on the one hand, and the distance on the other. The proposed ANN model calculates distance with an average error of 7.31 cm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于无源超高频RFID标签测距的人工神经网络
无源超高频(UHF)射频识别(RFID)标签在室内环境中的测距是当今的热点问题。由于这种环境的复杂性,目前还没有有效的解决方案。本文研究了人工神经网络在无源超高频RFID标签室内定位中的应用。也就是说,我们估计阅读器天线和附着在物品上的几个标签之间的距离,使用ann在接收信号强度指示器(RSSI)的测量值之间执行的非线性映射,一方面打开电源和相位,另一方面打开距离。该模型计算距离的平均误差为7.31 cm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technical program committee A bidirectional moving field inductive power transfer system for electric vehicles Dynamic REM towards flexible spectrum management Artificial Neural Networks for ranging of passive UHF RFID tags Prediction and measurement of electromagnetic radiation at Krajina square in the city of Banja Luka
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1