Towards Improving Data Transfer Efficiency for Accelerators Using Hardware Compression

Max Plauth, A. Polze
{"title":"Towards Improving Data Transfer Efficiency for Accelerators Using Hardware Compression","authors":"Max Plauth, A. Polze","doi":"10.1109/CANDARW.2018.00031","DOIUrl":null,"url":null,"abstract":"The overhead of moving data is the major limiting factor in todays hardware, especially in heterogeneous systems where data needs to be transferred frequently between host and accelerator memory. With the increasing availability of hardware-based compression facilities in modern computer architectures, this paper investigates the potential of hardware-accelerated I/O Link Compression as a promising approach to reduce data volumes and transfer time, thus improving the overall efficiency of accelerators in heterogeneous systems. Our considerations are focused on On-the-Fly compression in both Single-Node and Scale-Out deployments. Based on a theoretical analysis, this paper demonstrates the feasibility of hardware-accelerated On-the-Fly I/O Link Compression for many workloads in a Scale-Out scenario, and for some even in a Single-Node scenario. These findings are confirmed in a preliminary evaluation using software-and hardware-based implementations of the 842 compression algorithm.","PeriodicalId":329439,"journal":{"name":"2018 Sixth International Symposium on Computing and Networking Workshops (CANDARW)","volume":"55 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Sixth International Symposium on Computing and Networking Workshops (CANDARW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CANDARW.2018.00031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The overhead of moving data is the major limiting factor in todays hardware, especially in heterogeneous systems where data needs to be transferred frequently between host and accelerator memory. With the increasing availability of hardware-based compression facilities in modern computer architectures, this paper investigates the potential of hardware-accelerated I/O Link Compression as a promising approach to reduce data volumes and transfer time, thus improving the overall efficiency of accelerators in heterogeneous systems. Our considerations are focused on On-the-Fly compression in both Single-Node and Scale-Out deployments. Based on a theoretical analysis, this paper demonstrates the feasibility of hardware-accelerated On-the-Fly I/O Link Compression for many workloads in a Scale-Out scenario, and for some even in a Single-Node scenario. These findings are confirmed in a preliminary evaluation using software-and hardware-based implementations of the 842 compression algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用硬件压缩提高加速器数据传输效率的研究
移动数据的开销是当今硬件的主要限制因素,特别是在需要在主机和加速器内存之间频繁传输数据的异构系统中。随着现代计算机体系结构中基于硬件的压缩设施的可用性越来越高,本文研究了硬件加速I/O链路压缩的潜力,作为一种有前途的方法来减少数据量和传输时间,从而提高异构系统中加速器的整体效率。我们关注的是单节点和横向扩展部署中的动态压缩。在理论分析的基础上,本文论证了硬件加速实时I/O链路压缩在Scale-Out场景下的许多工作负载,甚至在单节点场景下的可行性。这些发现在使用基于软件和硬件的842压缩算法实现的初步评估中得到了证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards Improving Data Transfer Efficiency for Accelerators Using Hardware Compression Tile Art Image Generation Using Conditional Generative Adversarial Networks A New Higher Order Differential of FeW Non-volatile Memory Driver for Applying Automated Tiered Storage with Fast Memory and Slow Flash Storage DHT Clustering for Load Balancing Considering Blockchain Data Size
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1