ComparativeAnalysisofARIMAandLSTMM achine Learning Algorithm for Stock PricePrediction

Mohammad Monirujjaman Khan, Md. Farabi Alam, Shoumik Mahabub Ridoy
{"title":"ComparativeAnalysisofARIMAandLSTMM achine Learning Algorithm for Stock PricePrediction","authors":"Mohammad Monirujjaman Khan, Md. Farabi Alam, Shoumik Mahabub Ridoy","doi":"10.1109/aiiot54504.2022.9817176","DOIUrl":null,"url":null,"abstract":"Stocksofcompaniesheavilyinfluencethefinancial markets around the world. These companies help tocontributeandimprovetheoverallGDPofaneconomy.Hence, the importance of having a grip on the stock market forventurecapitalistsandcompaniesisinevitablefortheirfinancial benefit and growth. It is crucial to predict the stockprice to stay at the forefront of the financial world. None of theexistingmachinelearningtechniquescanprovideaperfectpredi ction of the stock prices due to the unpredictable identityof the stock market. The stock price prediction employing twomachinelearningalgorithms,LongShort-TermMemory(LSTM)andAutoregressivelntegratedMovingAve rage(ARIMA), willbediscussedindepthinthisstudy. Theaccuracy achieved by these two algorithms was compared. Inour comparison, we found out that, generally, LSTM had ahigheraccuracyrateinthestockpriceprediction.ARIMAprovide dbetterperformancewithasmalldatatimeframe, while LSTM had better performance in predicting stock pricewhenthedatatimeframeusedwaslarge.","PeriodicalId":409264,"journal":{"name":"2022 IEEE World AI IoT Congress (AIIoT)","volume":"29 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE World AI IoT Congress (AIIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/aiiot54504.2022.9817176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Stocksofcompaniesheavilyinfluencethefinancial markets around the world. These companies help tocontributeandimprovetheoverallGDPofaneconomy.Hence, the importance of having a grip on the stock market forventurecapitalistsandcompaniesisinevitablefortheirfinancial benefit and growth. It is crucial to predict the stockprice to stay at the forefront of the financial world. None of theexistingmachinelearningtechniquescanprovideaperfectpredi ction of the stock prices due to the unpredictable identityof the stock market. The stock price prediction employing twomachinelearningalgorithms,LongShort-TermMemory(LSTM)andAutoregressivelntegratedMovingAve rage(ARIMA), willbediscussedindepthinthisstudy. Theaccuracy achieved by these two algorithms was compared. Inour comparison, we found out that, generally, LSTM had ahigheraccuracyrateinthestockpriceprediction.ARIMAprovide dbetterperformancewithasmalldatatimeframe, while LSTM had better performance in predicting stock pricewhenthedatatimeframeusedwaslarge.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
arima&lstmm机器学习算法在股票价格预测中的比较分析
股票公司在很大程度上影响着全球的金融市场。这些公司有助于促进和改善整体gdp经济。因此,对风险资本主义者和公司来说,控制股票市场的重要性对于他们的财务利益和增长是不可避免的。要想在金融世界中保持领先地位,预测股价至关重要。由于股票市场的不可预测性,现有的机器学习技术都不能提供完美的股票价格预测。本文将深入讨论长短期记忆(LSTM)和自回归集成移动均值(ARIMA)两种机器学习算法的股票价格预测。比较了两种算法的精度。通过比较,我们发现LSTM在股票价格预测中具有较高的准确率。arima在数据时间帧较小时提供了更好的性能,而LSTM在数据时间帧较大时在预测股票价格方面有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Facial Detection in Low Light Environments Using OpenCV ComparativeAnalysisofARIMAandLSTMM achine Learning Algorithm for Stock PricePrediction A Hybrid Firefly-DE algorithm for Ridesharing Systems with Cost Savings Allocation Schemes Towards A Lightweight Identity Management and Secure Authentication for IoT Using Blockchain Comparative Study of Sha-256 Optimization Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1