Tsion Teklemarim, C. Stolz, M. Brophy, Michael Pierce, P. Kupinski
{"title":"The influence of oxygen partial pressure on the properties of evaporated alumina thin films","authors":"Tsion Teklemarim, C. Stolz, M. Brophy, Michael Pierce, P. Kupinski","doi":"10.1117/12.2599213","DOIUrl":null,"url":null,"abstract":"The effect of oxygen partial pressure on the properties of Al2O3 films deposited by electron beam evaporation has been investigated through a combination of spectrophotometric and interferometric characterization techniques. As oxygen partial pressure increases, a decrease in the refractive index is observed, as well as a shift towards less tensile films once they are exposed to ambient conditions. This decrease in tensile stress was observed to be correlated with water content in the films. Increasing oxygen partial pressure during deposition improved film stoichiometry, absorption, and laser induced damage threshold (LIDT) at 351 nm.","PeriodicalId":202227,"journal":{"name":"Laser Damage","volume":"83 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser Damage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2599213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The effect of oxygen partial pressure on the properties of Al2O3 films deposited by electron beam evaporation has been investigated through a combination of spectrophotometric and interferometric characterization techniques. As oxygen partial pressure increases, a decrease in the refractive index is observed, as well as a shift towards less tensile films once they are exposed to ambient conditions. This decrease in tensile stress was observed to be correlated with water content in the films. Increasing oxygen partial pressure during deposition improved film stoichiometry, absorption, and laser induced damage threshold (LIDT) at 351 nm.