Robust Human Identity Anonymization using Pose Estimation

Hengyuan Zhang, Jing-Yan Liao, D. Paz, Henrik I. Christensen
{"title":"Robust Human Identity Anonymization using Pose Estimation","authors":"Hengyuan Zhang, Jing-Yan Liao, D. Paz, Henrik I. Christensen","doi":"10.1109/CASE49997.2022.9926568","DOIUrl":null,"url":null,"abstract":"Many outdoor autonomous mobile platforms require more human identity anonymized data to power their data-driven algorithms. The human identity anonymization should be robust so that less manual intervention is needed, which remains a challenge for current face detection and anonymization systems. In this paper, we propose to use the skeleton generated from the state-of-the-art human pose estimation model to help localize human heads. We develop criteria to evaluate the performance and compare it with the face detection approach. We demonstrate that the proposed algorithm can reduce missed faces and thus better protect the identity information for the pedestrians. We also develop a confidence-based fusion method to further improve the performance.","PeriodicalId":325778,"journal":{"name":"2022 IEEE 18th International Conference on Automation Science and Engineering (CASE)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 18th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE49997.2022.9926568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many outdoor autonomous mobile platforms require more human identity anonymized data to power their data-driven algorithms. The human identity anonymization should be robust so that less manual intervention is needed, which remains a challenge for current face detection and anonymization systems. In this paper, we propose to use the skeleton generated from the state-of-the-art human pose estimation model to help localize human heads. We develop criteria to evaluate the performance and compare it with the face detection approach. We demonstrate that the proposed algorithm can reduce missed faces and thus better protect the identity information for the pedestrians. We also develop a confidence-based fusion method to further improve the performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于姿态估计的鲁棒人体身份匿名化
许多户外自主移动平台需要更多的人类身份匿名数据来支持他们的数据驱动算法。人类身份匿名化必须具有鲁棒性,以减少人工干预,这是当前人脸检测和匿名化系统面临的一个挑战。在本文中,我们建议使用最先进的人体姿态估计模型生成的骨骼来帮助定位人类头部。我们制定了评估性能的标准,并将其与人脸检测方法进行比较。实验证明,该算法可以减少行人的人脸缺失,从而更好地保护行人的身份信息。我们还开发了一种基于置信度的融合方法来进一步提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RailTwin: A Digital Twin Framework For Railway Cross-Domain Fault Diagnosis via Meta-Learning-Based Domain Generalization Automated Sample Pretreatment and Measurement of Benzodiazepines in Serum Using a Biomek i7 Hybrid Workstation and LC-MS/MS Wind energy forecasting using multiple ARIMA models Robust Human Identity Anonymization using Pose Estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1