F. Rittweger, P. Schiepel, Jonas Ernsting, K. Riemschneider
{"title":"Sensor Data Communication via Light Guide Body for Monitoring Vehicle Batteries","authors":"F. Rittweger, P. Schiepel, Jonas Ernsting, K. Riemschneider","doi":"10.1109/SAS54819.2022.9881250","DOIUrl":null,"url":null,"abstract":"In this paper, we present a solution for sensor data communication within an electric vehicle battery module, which is based on an optical transmission channel without any optical fibers. Instead, the communication is implemented via a transparent plastic component integrated in the battery package. The development of such a light guide body is discussed. Using this physical layer, the concept of the dedicated sensor network follows the idea of a decentralized signal processing. Thereby, parallel operating cell controllers at each cell are implemented. The solution is compared to the state-of-the-art wired communication as well as to alternative methods. Besides the functional demonstration, the implementation of a double-stack communication protocol is also discussed. This ensures a flexible and scalable integration with different sensors and battery setups in the future.","PeriodicalId":129732,"journal":{"name":"2022 IEEE Sensors Applications Symposium (SAS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS54819.2022.9881250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we present a solution for sensor data communication within an electric vehicle battery module, which is based on an optical transmission channel without any optical fibers. Instead, the communication is implemented via a transparent plastic component integrated in the battery package. The development of such a light guide body is discussed. Using this physical layer, the concept of the dedicated sensor network follows the idea of a decentralized signal processing. Thereby, parallel operating cell controllers at each cell are implemented. The solution is compared to the state-of-the-art wired communication as well as to alternative methods. Besides the functional demonstration, the implementation of a double-stack communication protocol is also discussed. This ensures a flexible and scalable integration with different sensors and battery setups in the future.