Nonparametric Adjoint-Based Inference for Stochastic Differential Equations

H. Bhat, R. Madushani
{"title":"Nonparametric Adjoint-Based Inference for Stochastic Differential Equations","authors":"H. Bhat, R. Madushani","doi":"10.1109/DSAA.2016.69","DOIUrl":null,"url":null,"abstract":"We develop a nonparametric method to infer the drift and diffusion functions of a stochastic differential equation. With this method, we can build predictive models starting with repeated time series and/or high-dimensional longitudinal data. Typical use of the method includes forecasting the future density or distribution of the variable being measured. The key innovation in our method stems from efficient algorithms to evaluate a likelihood function and its gradient. These algorithms do not rely on sampling, instead, they use repeated quadrature and the adjoint method to enable the inference to scale well as the dimensionality of the parameter vector grows. In simulated data tests, when the number of sample paths is large, the method does an excellent job of inferring drift functions close to the ground truth. We show that even when the method does not infer the drift function correctly, it still yields models with good predictive power. Finally, we apply the method to real data on hourly measurements of ground level ozone, showing that it is capable of reasonable results.","PeriodicalId":193885,"journal":{"name":"2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSAA.2016.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We develop a nonparametric method to infer the drift and diffusion functions of a stochastic differential equation. With this method, we can build predictive models starting with repeated time series and/or high-dimensional longitudinal data. Typical use of the method includes forecasting the future density or distribution of the variable being measured. The key innovation in our method stems from efficient algorithms to evaluate a likelihood function and its gradient. These algorithms do not rely on sampling, instead, they use repeated quadrature and the adjoint method to enable the inference to scale well as the dimensionality of the parameter vector grows. In simulated data tests, when the number of sample paths is large, the method does an excellent job of inferring drift functions close to the ground truth. We show that even when the method does not infer the drift function correctly, it still yields models with good predictive power. Finally, we apply the method to real data on hourly measurements of ground level ozone, showing that it is capable of reasonable results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机微分方程的非参数伴随推理
本文提出了一种非参数方法来推导随机微分方程的漂移函数和扩散函数。使用这种方法,我们可以从重复的时间序列和/或高维纵向数据开始构建预测模型。该方法的典型用途包括预测被测变量的未来密度或分布。该方法的关键创新源于评估似然函数及其梯度的有效算法。这些算法不依赖于采样,而是使用重复正交和伴随方法,使推理能够随着参数向量维数的增长而扩展。在模拟数据测试中,当样本路径数量较大时,该方法可以很好地推断出接近地面真实值的漂移函数。我们表明,即使该方法不能正确地推断漂移函数,它仍然产生具有良好预测能力的模型。最后,将该方法应用于每小时地面臭氧测量的实际数据,结果表明该方法能够得到合理的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Multi-Granularity Pattern-Based Sequence Classification Framework for Educational Data Task Composition in Crowdsourcing Maritime Pattern Extraction from AIS Data Using a Genetic Algorithm What Did I Do Wrong in My MOBA Game? Mining Patterns Discriminating Deviant Behaviours Nonparametric Adjoint-Based Inference for Stochastic Differential Equations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1