Multi-Shell Diffusion MRI Measures of Brain Aging: A Preliminary Comparison From ADNI3

T. Nir, S. Thomopoulos, J. Villalon-Reina, A. Zavaliangos-Petropulu, E. Dennis, Robert I. Reid, M. Bernstein, B. Borowski, C. Jack, M. Weiner, N. Jahanshad, P. Thompson
{"title":"Multi-Shell Diffusion MRI Measures of Brain Aging: A Preliminary Comparison From ADNI3","authors":"T. Nir, S. Thomopoulos, J. Villalon-Reina, A. Zavaliangos-Petropulu, E. Dennis, Robert I. Reid, M. Bernstein, B. Borowski, C. Jack, M. Weiner, N. Jahanshad, P. Thompson","doi":"10.1109/ISBI.2019.8759486","DOIUrl":null,"url":null,"abstract":"The Alzheimer’s Disease Neuroimaging Initiative (phase 3; ADNI3) is collecting multisite diffusion MRI (dMRI) data using protocols optimized for different scanner vendors, including one multi-shell protocol, to better understand disease effects. Here, we analyzed multi-shell scans from 56 ADNI3 participants (age: $74.3 \\pm 7.5$ yrs; 17F/49M). We evaluated whether multi-shell dMRI measures computed from neurite orientation dispersion and density imaging (NODDI) and diffusion kurtosis imaging (DKI) differentiated people with mild cognitive impairment from healthy controls with higher sensitivity than standard diffusion tensor imaging (DTI) measures. We also assessed the effects of various multi-shell derived dMRI samples on the sensitivity of DTI measures. While we did not identify large differences in effect sizes among tensor-based, NODDI, or DKI measures, we did detect greater effect sizes from DTI measures estimated using multi-shell data converted to single-shell HARDI compared to those fit using the subset of $48 b=1000s /$mm $^{2}$ volumes, typical of DTI.","PeriodicalId":119935,"journal":{"name":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2019.8759486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The Alzheimer’s Disease Neuroimaging Initiative (phase 3; ADNI3) is collecting multisite diffusion MRI (dMRI) data using protocols optimized for different scanner vendors, including one multi-shell protocol, to better understand disease effects. Here, we analyzed multi-shell scans from 56 ADNI3 participants (age: $74.3 \pm 7.5$ yrs; 17F/49M). We evaluated whether multi-shell dMRI measures computed from neurite orientation dispersion and density imaging (NODDI) and diffusion kurtosis imaging (DKI) differentiated people with mild cognitive impairment from healthy controls with higher sensitivity than standard diffusion tensor imaging (DTI) measures. We also assessed the effects of various multi-shell derived dMRI samples on the sensitivity of DTI measures. While we did not identify large differences in effect sizes among tensor-based, NODDI, or DKI measures, we did detect greater effect sizes from DTI measures estimated using multi-shell data converted to single-shell HARDI compared to those fit using the subset of $48 b=1000s /$mm $^{2}$ volumes, typical of DTI.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多壳扩散MRI测量脑老化:与ADNI3的初步比较
阿尔茨海默病神经影像学倡议(第3期;ADNI3)正在使用针对不同扫描仪供应商优化的协议(包括一个多外壳协议)收集多位点扩散MRI (dMRI)数据,以更好地了解疾病影响。在这里,我们分析了来自56名ADNI3参与者(年龄:74.3美元/ pm 7.5美元/年;17 f / 49米)。我们评估了由神经突定向弥散和密度成像(NODDI)和弥散峰度成像(DKI)计算的多壳dMRI测量是否能以比标准弥散张量成像(DTI)测量更高的灵敏度将轻度认知障碍患者与健康对照区分开来。我们还评估了各种多壳衍生的dMRI样品对DTI测量灵敏度的影响。虽然我们没有发现基于张量、NODDI或DKI测量之间的效应大小差异很大,但我们确实发现,与使用典型DTI的$48 b=1000s /$mm $^{2}$体积子集拟合的DTI测量相比,使用转换为单壳HARDI的多壳数据估计的DTI测量的效应大小更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Regularisation With a Dictionary of Lines for Medical Ultrasound Image Deconvolution On Multifractal Tissue Characterization in Ultrasound Imaging A Deep Learning Approach To Identify MRNA Localization Patterns Deforming Tessellations For The Segmentation Of Cell Aggregates Multi-Shell Diffusion MRI Measures of Brain Aging: A Preliminary Comparison From ADNI3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1