Deep Neural Network-based Feature Descriptor for Retinal Image Registration

Eldar abanoviè, Gediminas Stankevièius, Dalius Matuzevièius
{"title":"Deep Neural Network-based Feature Descriptor for Retinal Image Registration","authors":"Eldar abanoviè, Gediminas Stankevièius, Dalius Matuzevièius","doi":"10.1109/AIEEE.2018.8592033","DOIUrl":null,"url":null,"abstract":"Feature description is an important step in image registration work flow. Discriminative power of feature descriptors affects feature matching performance and overall results of image registration. Deep Neural Network-based (DNN) feature descriptors are emerging trend in image registration tasks, often performing equally or better than hand-crafted ones. However, there are no learned local feature descriptors, specifically trained for human retinal image registration. In this paper we propose DNN-based feature descriptor that was trained on retinal image patches and compare it to well-known hand-crafted feature descriptors. Training dataset of image patches was compiled from nine online datasets of eye fundus images. Learned feature descriptor was compared to other descriptors using Fundus Image Registration dataset (FIRE), measuring amount of correctly matched ground truth points (Rank-1 metric) after feature description. We compare the performance of various feature descriptors applied for retinal image feature matching.","PeriodicalId":198244,"journal":{"name":"2018 IEEE 6th Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 6th Workshop on Advances in Information, Electronic and Electrical Engineering (AIEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIEEE.2018.8592033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Feature description is an important step in image registration work flow. Discriminative power of feature descriptors affects feature matching performance and overall results of image registration. Deep Neural Network-based (DNN) feature descriptors are emerging trend in image registration tasks, often performing equally or better than hand-crafted ones. However, there are no learned local feature descriptors, specifically trained for human retinal image registration. In this paper we propose DNN-based feature descriptor that was trained on retinal image patches and compare it to well-known hand-crafted feature descriptors. Training dataset of image patches was compiled from nine online datasets of eye fundus images. Learned feature descriptor was compared to other descriptors using Fundus Image Registration dataset (FIRE), measuring amount of correctly matched ground truth points (Rank-1 metric) after feature description. We compare the performance of various feature descriptors applied for retinal image feature matching.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度神经网络的视网膜图像配准特征描述符
特征描述是图像配准工作流程中的重要步骤。特征描述符的判别能力影响着特征匹配的性能和图像配准的整体效果。基于深度神经网络(Deep Neural network, DNN)的特征描述符是图像配准任务中的新兴趋势,通常表现与手工制作的特征描述符相同或更好。然而,目前还没有专门训练用于人眼视网膜图像配准的局部特征描述符。在本文中,我们提出了基于dnn的特征描述符,该特征描述符在视网膜图像斑块上进行训练,并将其与已知的手工特征描述符进行比较。利用9个在线眼底图像数据集构建图像贴片训练数据集。使用眼底图像配准数据集(FIRE)将学习到的特征描述符与其他描述符进行比较,测量特征描述后正确匹配的地面真值点(Rank-1度量)的数量。我们比较了各种用于视网膜图像特征匹配的特征描述符的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence Analysis of Mutual Coupling Effects between a High-Voltage Transmission Line and a Fibre-optic Cable with a Conductive Support Element Deep Neural Network-based Feature Descriptor for Retinal Image Registration AIEEE 2018 Welcome Message AIEEE 2018 Title Page AIEEE 2018 Conference Organizers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1