Amelia Beckley, Baden Parr, Sanjay Mathrani, M. Legg, Andrew Drain
{"title":"Mechanical Requirements for a Smart Inhaler Product","authors":"Amelia Beckley, Baden Parr, Sanjay Mathrani, M. Legg, Andrew Drain","doi":"10.1109/SAS48726.2020.9220048","DOIUrl":null,"url":null,"abstract":"Asthma and other respiratory diseases are a significant problem for the New Zealand health sector. There are several factors that make asthma treatment difficult and these have led to the development of smart inhaler devices. However, the devices currently available on the market do not address the core problems with asthma treatment and so a new smart inhaler product is being developed. The smart inhaler product uses an acoustic sensor to detect inhalation flow rate and a haptic motor to provide vibration feedback. To avoid the vibration feedback interfering with the acoustic sensing, vibration damping methods have been employed. Passive damping using viscoelastic material was chosen as it is low-cost and compact. However, results show that these methods are not effective enough to reduce the magnitude of the vibration noise below the magnitude of the inhalation signal using the current acoustic sensor (a microphone). It is possible that effective damping could be achieved using a transducer as the acoustic sensor. However, the transducer must be integrated with the smart inhaler product and likely isolated in some way. Following this, further testing would be required.","PeriodicalId":223737,"journal":{"name":"2020 IEEE Sensors Applications Symposium (SAS)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS48726.2020.9220048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Asthma and other respiratory diseases are a significant problem for the New Zealand health sector. There are several factors that make asthma treatment difficult and these have led to the development of smart inhaler devices. However, the devices currently available on the market do not address the core problems with asthma treatment and so a new smart inhaler product is being developed. The smart inhaler product uses an acoustic sensor to detect inhalation flow rate and a haptic motor to provide vibration feedback. To avoid the vibration feedback interfering with the acoustic sensing, vibration damping methods have been employed. Passive damping using viscoelastic material was chosen as it is low-cost and compact. However, results show that these methods are not effective enough to reduce the magnitude of the vibration noise below the magnitude of the inhalation signal using the current acoustic sensor (a microphone). It is possible that effective damping could be achieved using a transducer as the acoustic sensor. However, the transducer must be integrated with the smart inhaler product and likely isolated in some way. Following this, further testing would be required.