Top Subspace Synthesizing for Promotional Subspace Mining

Yan Zhang, Yiyu Jia, C. Zhao
{"title":"Top Subspace Synthesizing for Promotional Subspace Mining","authors":"Yan Zhang, Yiyu Jia, C. Zhao","doi":"10.1109/ICTAI.2011.144","DOIUrl":null,"url":null,"abstract":"In Promotional Subspace Mining (PSM), Pat Ranking provides an effective way to locate the outstanding subspaces for a given object among a group of competitive objects in multidimensional data. In this paper, we propose a top subspace synthesis framework that aims to integrate the results produced through independent Pat Ranking procedures on multiple data sets. This solution framework provides a more sophisticated top subspace evaluation method, a potential solution that distributes the computation burden, and an effective strategy for mining promotional subspaces under streaming data setting.","PeriodicalId":332661,"journal":{"name":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2011.144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In Promotional Subspace Mining (PSM), Pat Ranking provides an effective way to locate the outstanding subspaces for a given object among a group of competitive objects in multidimensional data. In this paper, we propose a top subspace synthesis framework that aims to integrate the results produced through independent Pat Ranking procedures on multiple data sets. This solution framework provides a more sophisticated top subspace evaluation method, a potential solution that distributes the computation burden, and an effective strategy for mining promotional subspaces under streaming data setting.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
推广子空间挖掘的顶子空间综合
在促进子空间挖掘(PSM)中,Pat排序提供了一种有效的方法来定位多维数据中给定对象在一组竞争对象中的突出子空间。在本文中,我们提出了一个顶级子空间综合框架,旨在整合多个数据集上通过独立的Pat排序过程产生的结果。该解决方案框架提供了一种更复杂的顶子空间评估方法,一种分配计算负担的潜在解决方案,以及一种有效的流数据集推广子空间挖掘策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Independence-Based MAP for Markov Networks Structure Discovery Flexible, Efficient and Interactive Retrieval for Supporting In-silico Studies of Endobacteria Recurrent Neural Networks for Moisture Content Prediction in Seed Corn Dryer Buildings Top Subspace Synthesizing for Promotional Subspace Mining RELIEF-C: Efficient Feature Selection for Clustering over Noisy Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1