Numerical solution of differential equations by radial basis function neural networks

Liang Jianyu, Luo Siwei, Qi Yingjian, H. Yaping
{"title":"Numerical solution of differential equations by radial basis function neural networks","authors":"Liang Jianyu, Luo Siwei, Qi Yingjian, H. Yaping","doi":"10.1109/IJCNN.2002.1005571","DOIUrl":null,"url":null,"abstract":"In this paper we present a method for solving linear ordinary differential equations (ODE) based on multiquadric (MQ) radial basis function networks (RBFNs). According to the thought of approximation of function and/or its derivatives by using radial basis function networks, another new RBFN approximation procedures different from are developed in this paper for solving ODE. This technique can determine all the parameters at the same time without a learning process. The advantage of this technique is that it doesn't need sufficient data, just relies on the domain and the boundary. Our results are more accurate.","PeriodicalId":382771,"journal":{"name":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2002.1005571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

In this paper we present a method for solving linear ordinary differential equations (ODE) based on multiquadric (MQ) radial basis function networks (RBFNs). According to the thought of approximation of function and/or its derivatives by using radial basis function networks, another new RBFN approximation procedures different from are developed in this paper for solving ODE. This technique can determine all the parameters at the same time without a learning process. The advantage of this technique is that it doesn't need sufficient data, just relies on the domain and the boundary. Our results are more accurate.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于径向基函数神经网络的微分方程数值解
本文提出了一种基于多重二次径向基函数网络(rbfn)的线性常微分方程求解方法。根据利用径向基函数网络逼近函数及其导数的思想,本文提出了另一种不同于径向基函数网络的求解ODE的RBFN逼近方法。该技术可以同时确定所有参数,而无需学习过程。该技术的优点是不需要足够的数据,只依赖于域和边界。我们的结果更准确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CMAC-based fault diagnosis of power transformers Shape, orientation and size recognition of normal and ambiguous faces by a rotation and size spreading associative neural network Neuronal signal processing in Parkinson's disease Blind signal separation via simultaneous perturbation method Numerical solution of differential equations by radial basis function neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1