{"title":"Sentiment Classification Based on Random Process","authors":"Jintao Mao, Jian Zhu","doi":"10.1109/ICCSEE.2012.377","DOIUrl":null,"url":null,"abstract":"Sentiment classification has attracted increasing interest from Natural Language Processing. The goal of sentiment classification is to automatically identify whether a given piece of text expresses positive or negative opinion towards a topic of interest. We present the standpoint that uses a human model based on random process to determine text polarity classification. Experiment results showed that on movie review corpus, the human modeling approach has a relatively higher accuracy than that of SVMs and Naïve Bayes classifier.","PeriodicalId":132465,"journal":{"name":"2012 International Conference on Computer Science and Electronics Engineering","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Computer Science and Electronics Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSEE.2012.377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Sentiment classification has attracted increasing interest from Natural Language Processing. The goal of sentiment classification is to automatically identify whether a given piece of text expresses positive or negative opinion towards a topic of interest. We present the standpoint that uses a human model based on random process to determine text polarity classification. Experiment results showed that on movie review corpus, the human modeling approach has a relatively higher accuracy than that of SVMs and Naïve Bayes classifier.