Sentiment Classification Based on Random Process

Jintao Mao, Jian Zhu
{"title":"Sentiment Classification Based on Random Process","authors":"Jintao Mao, Jian Zhu","doi":"10.1109/ICCSEE.2012.377","DOIUrl":null,"url":null,"abstract":"Sentiment classification has attracted increasing interest from Natural Language Processing. The goal of sentiment classification is to automatically identify whether a given piece of text expresses positive or negative opinion towards a topic of interest. We present the standpoint that uses a human model based on random process to determine text polarity classification. Experiment results showed that on movie review corpus, the human modeling approach has a relatively higher accuracy than that of SVMs and Naïve Bayes classifier.","PeriodicalId":132465,"journal":{"name":"2012 International Conference on Computer Science and Electronics Engineering","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Computer Science and Electronics Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSEE.2012.377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Sentiment classification has attracted increasing interest from Natural Language Processing. The goal of sentiment classification is to automatically identify whether a given piece of text expresses positive or negative opinion towards a topic of interest. We present the standpoint that uses a human model based on random process to determine text polarity classification. Experiment results showed that on movie review corpus, the human modeling approach has a relatively higher accuracy than that of SVMs and Naïve Bayes classifier.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于随机过程的情感分类
情感分类已经引起了自然语言处理领域越来越多的兴趣。情感分类的目标是自动识别给定文本对感兴趣的主题是否表达了积极或消极的观点。我们提出了使用基于随机过程的人类模型来确定文本极性分类的观点。实验结果表明,在电影评论语料库上,人建模方法比svm和Naïve贝叶斯分类器具有相对较高的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Survey of Computer Facial Animation Techniques Elevator System and Control to Achieve Based on MCS-51 Singlechip An Ant Colony System Based Routing Algorithm for Wireless Sensor Network Sentiment Classification Based on Random Process A X-Ray CMOS Image Sensor Based on Current Mirroring Integration Readout Circuit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1