Novel robust RM-KNN filters with impulsive noise suppression for image processing

V. Ponomaryov, A.B. Pogrebniak, F. Gonzales Leon
{"title":"Novel robust RM-KNN filters with impulsive noise suppression for image processing","authors":"V. Ponomaryov, A.B. Pogrebniak, F. Gonzales Leon","doi":"10.1109/ITS.1998.718474","DOIUrl":null,"url":null,"abstract":"We introduce novel robust filtering algorithms applicable to image processing. They are derived by use of RM-type point estimations and the restriction technique of the well-known, specifically for image processing, KNN filter. The derived RM-KNN filters effectively remove impulsive noise while edge and fine details are preserved. The proposed filters are tested on simulated images and real imaging radar data and provide excellent visual quality of the processed images and good quantitative quality in comparison with the standard median filter. Recommendations to obtain the best processing results by proper selection of derived filter parameters are given.","PeriodicalId":205350,"journal":{"name":"ITS'98 Proceedings. SBT/IEEE International Telecommunications Symposium (Cat. No.98EX202)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ITS'98 Proceedings. SBT/IEEE International Telecommunications Symposium (Cat. No.98EX202)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITS.1998.718474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We introduce novel robust filtering algorithms applicable to image processing. They are derived by use of RM-type point estimations and the restriction technique of the well-known, specifically for image processing, KNN filter. The derived RM-KNN filters effectively remove impulsive noise while edge and fine details are preserved. The proposed filters are tested on simulated images and real imaging radar data and provide excellent visual quality of the processed images and good quantitative quality in comparison with the standard median filter. Recommendations to obtain the best processing results by proper selection of derived filter parameters are given.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于脉冲噪声抑制的新型鲁棒RM-KNN滤波器
我们介绍了适用于图像处理的新型鲁棒滤波算法。它们是通过使用rm型点估计和众所周知的约束技术推导出来的,特别是用于图像处理的KNN滤波器。导出的RM-KNN滤波器有效地去除脉冲噪声,同时保留边缘和精细细节。在模拟图像和真实成像雷达数据上进行了测试,与标准中值滤波器相比,所提出的滤波器具有良好的视觉质量和定量质量。给出了适当选择衍生滤波器参数以获得最佳处理结果的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A coded modulation scheme for a broadcast AWGN channel Saving time and reducing network traffic with a graphical mobile agent inception system Novel robust RM-KNN filters with impulsive noise suppression for image processing Implementing a distributed Web-based management system in Java On bandwidth efficiency of BCM applied to non-square M-QAM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1