A Study of Parallel Particle Tracing for Steady-State and Time-Varying Flow Fields

T. Peterka, R. Ross, B. Nouanesengsy, Teng-Yok Lee, Han-Wei Shen, W. Kendall, Jian Huang
{"title":"A Study of Parallel Particle Tracing for Steady-State and Time-Varying Flow Fields","authors":"T. Peterka, R. Ross, B. Nouanesengsy, Teng-Yok Lee, Han-Wei Shen, W. Kendall, Jian Huang","doi":"10.1109/IPDPS.2011.62","DOIUrl":null,"url":null,"abstract":"Particle tracing for streamline and path line generation is a common method of visualizing vector fields in scientific data, but it is difficult to parallelize efficiently because of demanding and widely varying computational and communication loads. In this paper we scale parallel particle tracing for visualizing steady and unsteady flow fields well beyond previously published results. We configure the 4D domain decomposition into spatial and temporal blocks that combine in-core and out-of-core execution in a flexible way that favors faster run time or smaller memory. We also compare static and dynamic partitioning approaches. Strong and weak scaling curves are presented for tests conducted on an IBM Blue Gene/P machine at up to 32 K processes using a parallel flow visualization library that we are developing. Datasets are derived from computational fluid dynamics simulations of thermal hydraulics, liquid mixing, and combustion.","PeriodicalId":355100,"journal":{"name":"2011 IEEE International Parallel & Distributed Processing Symposium","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"92","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Parallel & Distributed Processing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2011.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 92

Abstract

Particle tracing for streamline and path line generation is a common method of visualizing vector fields in scientific data, but it is difficult to parallelize efficiently because of demanding and widely varying computational and communication loads. In this paper we scale parallel particle tracing for visualizing steady and unsteady flow fields well beyond previously published results. We configure the 4D domain decomposition into spatial and temporal blocks that combine in-core and out-of-core execution in a flexible way that favors faster run time or smaller memory. We also compare static and dynamic partitioning approaches. Strong and weak scaling curves are presented for tests conducted on an IBM Blue Gene/P machine at up to 32 K processes using a parallel flow visualization library that we are developing. Datasets are derived from computational fluid dynamics simulations of thermal hydraulics, liquid mixing, and combustion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稳态和时变流场的平行粒子跟踪研究
流线粒子跟踪和路径生成是科学数据中矢量场可视化的一种常用方法,但由于计算和通信负荷大且要求高,难以实现有效的并行化。在这篇论文中,我们扩展了平行粒子追踪来可视化稳态和非稳态流场,远远超出了以前发表的结果。我们将4D域分解配置为空间和时间块,以灵活的方式组合核内和核外执行,从而支持更快的运行时间或更小的内存。我们还比较了静态和动态分区方法。本文给出了在IBM Blue Gene/P机器上使用我们正在开发的并行流可视化库在高达32 K的进程下进行的测试的强缩放曲线和弱缩放曲线。数据集来源于计算流体动力学模拟的热液压,液体混合,和燃烧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Large-Scale Semantic Concept Detection on Manycore Platforms for Multimedia Mining Two-Stage Tridiagonal Reduction for Dense Symmetric Matrices Using Tile Algorithms on Multicore Architectures A Study of Parallel Particle Tracing for Steady-State and Time-Varying Flow Fields Smith-Waterman Alignment of Huge Sequences with GPU in Linear Space CheCL: Transparent Checkpointing and Process Migration of OpenCL Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1