{"title":"Finite-element simulation of fatigue behavior of a medical implant produced from titanium in the large-grained and nanostructured states","authors":"A. V. Kapustin, N. Enikeev","doi":"10.18323/2782-4039-2022-3-1-85-95","DOIUrl":null,"url":null,"abstract":"Nowadays, to improve the quality of life, dental implantation is widely used, and ensuring proper functioning and durability of the implantable devices is one of the most crucial tasks for modern-day dentistry. The development of new biomaterials with improved properties, such as nanostructured materials, widens the possibilities of medical goods miniaturization to create new-generation implants. Computer simulation plays a large part when designing these devices, which allows effectively specifying an implant design depending on the materials used and operation conditions. This paper presents the results of modeling using the finite-element method for the comparative analysis of an implant’s deformed behavior within the cyclic load conditions. The authors considered large-grained commercially pure titanium and nanostructured titanium with improved properties as implant material. The authors analyzed various arrangements of an implanted device according to the fatigue testing conditions – considering and not considering the influence of an abutment and the base reaction. The study identified the implant’s characteristics, such as fatigue endurance and safety factor for a specific type of arrangement and material type, as well as the equivalent stress distribution, including taking into account a sign. The research shows that the most realistic results can be achieved when modeling a device in the “abutment – implant – base” arrangement. The study demonstrates that strength characteristics crucial for product destruction are described by the maximum principal stresses, and the studied implant configuration ensures its longstanding proper functioning in the case of its production exceptionally from nanostructured titanium with enhanced properties.","PeriodicalId":251458,"journal":{"name":"Frontier materials & technologies","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontier materials & technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18323/2782-4039-2022-3-1-85-95","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Nowadays, to improve the quality of life, dental implantation is widely used, and ensuring proper functioning and durability of the implantable devices is one of the most crucial tasks for modern-day dentistry. The development of new biomaterials with improved properties, such as nanostructured materials, widens the possibilities of medical goods miniaturization to create new-generation implants. Computer simulation plays a large part when designing these devices, which allows effectively specifying an implant design depending on the materials used and operation conditions. This paper presents the results of modeling using the finite-element method for the comparative analysis of an implant’s deformed behavior within the cyclic load conditions. The authors considered large-grained commercially pure titanium and nanostructured titanium with improved properties as implant material. The authors analyzed various arrangements of an implanted device according to the fatigue testing conditions – considering and not considering the influence of an abutment and the base reaction. The study identified the implant’s characteristics, such as fatigue endurance and safety factor for a specific type of arrangement and material type, as well as the equivalent stress distribution, including taking into account a sign. The research shows that the most realistic results can be achieved when modeling a device in the “abutment – implant – base” arrangement. The study demonstrates that strength characteristics crucial for product destruction are described by the maximum principal stresses, and the studied implant configuration ensures its longstanding proper functioning in the case of its production exceptionally from nanostructured titanium with enhanced properties.