Geometric Sampling Framework for Exploring Molecular Walker Energetics and Dynamics

Bruna Jacobson, Jon Christian L. David, Mitchell C. Malone, Kasra Manavi, S. Atlas, Lydia Tapia
{"title":"Geometric Sampling Framework for Exploring Molecular Walker Energetics and Dynamics","authors":"Bruna Jacobson, Jon Christian L. David, Mitchell C. Malone, Kasra Manavi, S. Atlas, Lydia Tapia","doi":"10.1145/3107411.3107503","DOIUrl":null,"url":null,"abstract":"The motor protein kinesin is a remarkable natural nanobot that moves cellular cargo by taking 8 nm steps along a microtubule molecular highway. Understanding kinesin's mechanism of operation continues to present considerable modeling challenges, primarily due to the millisecond timescale of its motion, which prohibits fully atomistic simulations. Here we describe the first phase of a physics-based approach that combines energetic information from all-atom modeling with a robotic framework to enable kinetic access to longer simulation timescales. Starting from experimental PDB structures, we have designed a computational model of the combined kinesin-microtubule system represented by the isosurface of an all-atom model. We use motion planning techniques originally developed for robotics to generate candidate conformations of the kinesin head with respect to the microtubule, considering all six degrees of freedom of the molecular walker's catalytic domain. This efficient sampling technique, combined with all-atom energy calculations of the kinesin-microtubule system, allows us to explore the configuration space in the vicinity of the kinesin binding site on the microtubule. We report initial results characterizing the energy landscape of the kinesin-microtubule system, setting the stage for an efficient, graph-based exploration of kinesin preferential binding and dynamics on the microtubule, including interactions with obstacles.","PeriodicalId":246388,"journal":{"name":"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM International Conference on Bioinformatics, Computational Biology,and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3107411.3107503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The motor protein kinesin is a remarkable natural nanobot that moves cellular cargo by taking 8 nm steps along a microtubule molecular highway. Understanding kinesin's mechanism of operation continues to present considerable modeling challenges, primarily due to the millisecond timescale of its motion, which prohibits fully atomistic simulations. Here we describe the first phase of a physics-based approach that combines energetic information from all-atom modeling with a robotic framework to enable kinetic access to longer simulation timescales. Starting from experimental PDB structures, we have designed a computational model of the combined kinesin-microtubule system represented by the isosurface of an all-atom model. We use motion planning techniques originally developed for robotics to generate candidate conformations of the kinesin head with respect to the microtubule, considering all six degrees of freedom of the molecular walker's catalytic domain. This efficient sampling technique, combined with all-atom energy calculations of the kinesin-microtubule system, allows us to explore the configuration space in the vicinity of the kinesin binding site on the microtubule. We report initial results characterizing the energy landscape of the kinesin-microtubule system, setting the stage for an efficient, graph-based exploration of kinesin preferential binding and dynamics on the microtubule, including interactions with obstacles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索分子步行者能量学和动力学的几何采样框架
马达蛋白驱动蛋白是一种非凡的天然纳米机器人,它沿着微管分子高速公路以8纳米的速度移动细胞货物。了解kinesin的运作机制仍然存在相当大的建模挑战,主要是由于其运动的毫秒时间尺度,这禁止完全原子模拟。在这里,我们描述了基于物理的方法的第一阶段,该方法将来自全原子建模的能量信息与机器人框架相结合,以实现更长的模拟时间尺度的动力学访问。从实验PDB结构出发,我们设计了一个用全原子模型等面表示的联合动力微管系统的计算模型。我们使用最初为机器人技术开发的运动规划技术来生成相对于微管的运动蛋白头部的候选构象,考虑到分子步行者催化域的所有六个自由度。这种高效的采样技术,结合动力蛋白-微管系统的全原子能量计算,使我们能够探索微管上动力蛋白结合位点附近的构型空间。我们报告了初步结果,表征了动力蛋白-微管系统的能量景观,为有效的、基于图的探索动力蛋白在微管上的优先结合和动力学,包括与障碍物的相互作用,奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mapping Free Text into MedDRA by Natural Language Processing: A Modular Approach in Designing and Evaluating Software Extensions Evolving Conformation Paths to Model Protein Structural Transitions Supervised Machine Learning Approaches Predict and Characterize Nanomaterial Exposures: MWCNT Markers in Lung Lavage Fluid. Geometry Analysis for Protein Secondary Structures Matching Problem Geometric Sampling Framework for Exploring Molecular Walker Energetics and Dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1