{"title":"Energy Storage Gas Peaker Replacement: Optimal Sizing and Environmental Benefits","authors":"A. West, David M. Rosewater","doi":"10.1109/EESAT55007.2022.9998045","DOIUrl":null,"url":null,"abstract":"Peaker plants provide power to the grid at peak times of the day and are often located in marginalized communities where their pollution has been linked with adverse health outcomes. A linear program is developed to optimally size and control a battery energy storage system (BESS) combined with photovoltaics (PV) to replace a given peaker plant. This problem is of interest to utility resource planners wanting to weigh both economic and non-economic trade offs. An energy justice (EJ) metric is included in a post-optimization cost-benefit analysis. The results for a case study in New Mexico indicates that replacing most of the functionality of a given peaker plant with a BESS+PV system would be both cost effective and greatly reduce the health impacts of pollution and climate-economic impacts of CO2 emissions.","PeriodicalId":310250,"journal":{"name":"2022 IEEE Electrical Energy Storage Application and Technologies Conference (EESAT)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Electrical Energy Storage Application and Technologies Conference (EESAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EESAT55007.2022.9998045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Peaker plants provide power to the grid at peak times of the day and are often located in marginalized communities where their pollution has been linked with adverse health outcomes. A linear program is developed to optimally size and control a battery energy storage system (BESS) combined with photovoltaics (PV) to replace a given peaker plant. This problem is of interest to utility resource planners wanting to weigh both economic and non-economic trade offs. An energy justice (EJ) metric is included in a post-optimization cost-benefit analysis. The results for a case study in New Mexico indicates that replacing most of the functionality of a given peaker plant with a BESS+PV system would be both cost effective and greatly reduce the health impacts of pollution and climate-economic impacts of CO2 emissions.