Predicting degree-completion time with data mining

M. Wati, Haeruddin, Wahyu Indrawan
{"title":"Predicting degree-completion time with data mining","authors":"M. Wati, Haeruddin, Wahyu Indrawan","doi":"10.1109/ICSITECH.2017.8257209","DOIUrl":null,"url":null,"abstract":"Data mining in academic databases nowadays used for analyzing patterns and gaining new useful knowledge. This paper tries to predict the degree-completion time of bachelor's degree students using data mining technique and algorithms especially C4.5 and naive Bayes classifier algorithm, and measure the algorithms accuracy, precision, and recall percentages for both algorithms also exploring some factors that assume in theory have some impact on the model. The result from given dataset to build the models shows that C4.5 algorithm better than naive Bayes classifier algorithm with 78% accuracy, 85% weighted mean class precision, and 65% weighted mean class recall. This research can be expanded with different data mining algorithms or other related attributes that have some effects to the degree-completion time.","PeriodicalId":165045,"journal":{"name":"2017 3rd International Conference on Science in Information Technology (ICSITech)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 3rd International Conference on Science in Information Technology (ICSITech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSITECH.2017.8257209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Data mining in academic databases nowadays used for analyzing patterns and gaining new useful knowledge. This paper tries to predict the degree-completion time of bachelor's degree students using data mining technique and algorithms especially C4.5 and naive Bayes classifier algorithm, and measure the algorithms accuracy, precision, and recall percentages for both algorithms also exploring some factors that assume in theory have some impact on the model. The result from given dataset to build the models shows that C4.5 algorithm better than naive Bayes classifier algorithm with 78% accuracy, 85% weighted mean class precision, and 65% weighted mean class recall. This research can be expanded with different data mining algorithms or other related attributes that have some effects to the degree-completion time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用数据挖掘预测学位完成时间
目前,学术数据库中的数据挖掘用于分析模式和获取新的有用知识。本文试图利用数据挖掘技术和算法,特别是C4.5算法和朴素贝叶斯分类器算法,对本科学生完成学位时间进行预测,并对两种算法的准确率、精密度和召回率进行度量,同时探索理论上假设对模型有一定影响的一些因素。基于给定数据集构建模型的结果表明,C4.5算法优于朴素贝叶斯分类器算法,准确率为78%,加权平均类精度为85%,加权平均类召回率为65%。该研究可以扩展为不同的数据挖掘算法或其他对学位完成时间有一定影响的相关属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blended learning in postgraduate program Predicting degree-completion time with data mining Real-time location recommendation system for field data collection Segmentation of retinal blood vessels using Gabor wavelet and morphological reconstruction The development and usability testing of game-based learning as a medium to introduce zoology to young learners
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1