Optimal parameter selection of a Model Predictive Control algorithm for energy efficient driving of heavy duty vehicles

Michael Henzler, M. Buchholz, K. Dietmayer
{"title":"Optimal parameter selection of a Model Predictive Control algorithm for energy efficient driving of heavy duty vehicles","authors":"Michael Henzler, M. Buchholz, K. Dietmayer","doi":"10.1109/IVS.2015.7225773","DOIUrl":null,"url":null,"abstract":"This paper presents an improved approach to the problem of energy efficient driving of heavy duty vehicles. The proposed model for a map-based Model Predictive Control (MPC) leads to an underlying Quadratic Programming (QP) optimization problem, allowing computationally efficient and robust solutions. A parameter estimation procedure is developed for a vehicle- and optimization-independent parametrization of the tradeoff between saving energy and keeping a desired vehicle velocity. Extensive simulations on a highway scenario for different optimization parameters give further insight to optimization properties, which can be utilized to enhance control performance. Compared to previous literature, we demonstrate a significant improvement of the computation time to under one-fifth of a millisecond, while maintaining (or even increasing) the fuel consumption reduction, which is 8.1 percent with the proposed approach compared to a standard cruise controller, without a decrease in the average cruising speed.","PeriodicalId":294701,"journal":{"name":"2015 IEEE Intelligent Vehicles Symposium (IV)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2015.7225773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper presents an improved approach to the problem of energy efficient driving of heavy duty vehicles. The proposed model for a map-based Model Predictive Control (MPC) leads to an underlying Quadratic Programming (QP) optimization problem, allowing computationally efficient and robust solutions. A parameter estimation procedure is developed for a vehicle- and optimization-independent parametrization of the tradeoff between saving energy and keeping a desired vehicle velocity. Extensive simulations on a highway scenario for different optimization parameters give further insight to optimization properties, which can be utilized to enhance control performance. Compared to previous literature, we demonstrate a significant improvement of the computation time to under one-fifth of a millisecond, while maintaining (or even increasing) the fuel consumption reduction, which is 8.1 percent with the proposed approach compared to a standard cruise controller, without a decrease in the average cruising speed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重型车辆节能驾驶模型预测控制算法的最优参数选择
本文提出了一种解决重型车辆节能驾驶问题的改进方法。提出的基于映射的模型预测控制(MPC)模型导致一个潜在的二次规划(QP)优化问题,允许计算效率和鲁棒性的解决方案。针对节能与保持理想车速之间的权衡问题,提出了一种独立于车辆与优化的参数化估计方法。对不同优化参数的高速公路场景进行了广泛的模拟,进一步了解了优化特性,可以利用这些特性来提高控制性能。与之前的文献相比,我们证明了计算时间的显着改进到五分之一毫秒以下,同时保持(甚至增加)燃油消耗降低,与标准巡航控制器相比,该方法的燃油消耗降低了8.1%,而平均巡航速度没有降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal parameter selection of a Model Predictive Control algorithm for energy efficient driving of heavy duty vehicles Map free lane following based on low-cost laser scanner for near future autonomous service vehicle Real-time small obstacle detection on highways using compressive RBM road reconstruction Developing a framework of Eco-Approach and Departure application for actuated signal control Face orientation estimation for driver monitoring with a single depth camera
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1