Monitoring a fuzzy object: The case of Lake Naivasha

W. Bijker, N. Hamm, Julian Ijumulana, Misganaw Kebede Wole
{"title":"Monitoring a fuzzy object: The case of Lake Naivasha","authors":"W. Bijker, N. Hamm, Julian Ijumulana, Misganaw Kebede Wole","doi":"10.1109/MULTI-TEMP.2011.6005071","DOIUrl":null,"url":null,"abstract":"This study shows two approaches to including uncertainty of the mapped feature in multi-temporal analysis. This is demonstrated on a series of Landsat ETM+ images of Lake Naivasha, Kenya, with fuzzy boundaries resulting from marshes and floating vegetation. The first approach creates image segments, merges these to image objects through object-based classification and calculates the uncertainty for the lake image object in each image. The second approach uses a soft classifier to calculate memberships for lake and land. The lake area is calculated for 6 different thresholds on membership for each “lake” membership image, reflecting thresholds on the uncertainty in the estimate. The method based on image objects and attached uncertainty provided a quick overview and highlights uncertainty related to image quality and time of observation. The method based on thresholding of membership gave more spatial detail, highlighting the effect of fuzzy boundaries.","PeriodicalId":254778,"journal":{"name":"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MULTI-TEMP.2011.6005071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This study shows two approaches to including uncertainty of the mapped feature in multi-temporal analysis. This is demonstrated on a series of Landsat ETM+ images of Lake Naivasha, Kenya, with fuzzy boundaries resulting from marshes and floating vegetation. The first approach creates image segments, merges these to image objects through object-based classification and calculates the uncertainty for the lake image object in each image. The second approach uses a soft classifier to calculate memberships for lake and land. The lake area is calculated for 6 different thresholds on membership for each “lake” membership image, reflecting thresholds on the uncertainty in the estimate. The method based on image objects and attached uncertainty provided a quick overview and highlights uncertainty related to image quality and time of observation. The method based on thresholding of membership gave more spatial detail, highlighting the effect of fuzzy boundaries.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
监测一个模糊的对象:奈瓦沙湖的案例
本研究展示了两种方法来包括映射特征的不确定性在多时间分析。肯尼亚奈瓦沙湖的一系列Landsat ETM+图像证明了这一点,由于沼泽和漂浮的植被,边界模糊。第一种方法是创建图像片段,通过基于对象的分类将这些图像片段合并到图像对象中,并计算每个图像中湖泊图像对象的不确定性。第二种方法使用软分类器来计算湖泊和土地的隶属度。每个“湖泊”隶属度图像按6个不同的隶属度阈值计算湖泊面积,反映了估计中不确定性的阈值。基于图像对象和附加不确定性的方法提供了一个快速概述,并突出了与图像质量和观察时间相关的不确定性。该方法基于隶属度阈值化,具有更多的空间细节,突出了模糊边界的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Monitoring a fuzzy object: The case of Lake Naivasha Greenland inland ice melt-off: Analysis of global gravity data from the GRACE satellites Effects of multitemporal scene changes on pansharpening fusion Quantification of LAI interannual anomalies by adjusting climatological patterns Analysis of LULC changes and urban expansion of the resort city of Al Ain using remote sensing and GIS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1