Sistema de clasificación SVM de señales electromiográficas extraídas en un sistema embebido

Luis Daniel Reyes Crusaley, J. R. Cárdenas-Valdez, G. Vázquez, Manuel Ortega, A. Calvillo-Téllez
{"title":"Sistema de clasificación SVM de señales electromiográficas extraídas en un sistema embebido","authors":"Luis Daniel Reyes Crusaley, J. R. Cárdenas-Valdez, G. Vázquez, Manuel Ortega, A. Calvillo-Téllez","doi":"10.13053/rcs-148-2-11","DOIUrl":null,"url":null,"abstract":"The present work presents the design of a wireless electromyographic biomedical signal acquisition system, which records the muscle signals in the EKG / EMG development card, the signals are transmitted through the ZigBee protocol in point-to-point or multipoint link, so it is scalable for more than one patient in parallel. The transmission of the data is received in the Raspberry Pi3 development card which truncates the received signal and is sent to the cloud for a classification process. The developed system is a precise proposal of low cost for the analysis of several patients, the proposed technique represents the stage of acquisition, analysis and truncation of data for a signal classification process based on support of vector machines (SVM) with the In order to predict the best type of therapy for a given patient. Experimental and simulation tests developed in hardware and classified in software through SVM show that the complete","PeriodicalId":220522,"journal":{"name":"Res. Comput. Sci.","volume":"197 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Res. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13053/rcs-148-2-11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The present work presents the design of a wireless electromyographic biomedical signal acquisition system, which records the muscle signals in the EKG / EMG development card, the signals are transmitted through the ZigBee protocol in point-to-point or multipoint link, so it is scalable for more than one patient in parallel. The transmission of the data is received in the Raspberry Pi3 development card which truncates the received signal and is sent to the cloud for a classification process. The developed system is a precise proposal of low cost for the analysis of several patients, the proposed technique represents the stage of acquisition, analysis and truncation of data for a signal classification process based on support of vector machines (SVM) with the In order to predict the best type of therapy for a given patient. Experimental and simulation tests developed in hardware and classified in software through SVM show that the complete
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在嵌入式系统中提取的肌电信号的SVM分类系统
本工作设计了一种无线肌电生物医学信号采集系统,该系统将肌肉信号记录在EKG / EMG发展卡中,信号通过ZigBee协议以点对点或多点链路传输,因此可并行扩展为多名患者。数据的传输在Raspberry Pi3开发卡中接收,该开发卡截断接收到的信号并发送到云端进行分类处理。所开发的系统是一种低成本的精确方案,用于对多个患者进行分析,所提出的技术代表了基于向量机支持(SVM)的信号分类过程的数据采集,分析和截断阶段,以预测给定患者的最佳治疗类型。在硬件上进行了实验和仿真测试,并通过支持向量机在软件上进行了分类
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation of an Intelligent Model based on Big Data and Decision Making using Fuzzy Logic Type-2 for the Car Assembly Industry in an Industrial Estate in Northern Mexico Random Forest and Deep Learning Performance on the Malaria DREAM Sub Challenge One A Model for Identifying Steps in Undergraduate Thesis Methodology Captura de atributos discriminativos Reconocimiento de gestos de la mano aplicado a una interfaz para ambientes de aprendizaje
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1