On the Study of Packed Catalyst Bed Stresses for Outward Radial Flow Reactors

D. Zhao, Mingxin Zhao
{"title":"On the Study of Packed Catalyst Bed Stresses for Outward Radial Flow Reactors","authors":"D. Zhao, Mingxin Zhao","doi":"10.1115/pvp2020-21611","DOIUrl":null,"url":null,"abstract":"\n Pressure drop in a radial flow reactor occurs when process flow crosses the packed catalyst bed installed between the two concentric perforated screens during operation. This pressure drop generates the lateral bed stress against the reactor’s perforated screens to shift. The pressure drop will further grow as catalyst attrition increases in production. For an outward radial flow, the pressure drop may exert higher stresses to the outer screen as the packed bed is pushed toward it. An extreme case is when the entire catalyst bed could be pinned to the outer screen of the reactor by enough pressure drop. This could cause the internal components to be overly stressed on the excessive bed load, for which the components might not have been designed adequately. Predicting how radial pressure drop impacts the bed stress and shifts the load distribution is important in preventing mechanical failure during operation. In this study, an analytical model is derived based on Janssen’s theory, a classical semi-empirical granular solid material model, to examine a generic packed catalyst bed in an outward radical flow reactor. A modification to Janssen’s theory is introduced to include pressure drop in order to explore its effects on bed stress and load. The critical condition is derived.","PeriodicalId":150804,"journal":{"name":"Volume 3: Design and Analysis","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Design and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/pvp2020-21611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Pressure drop in a radial flow reactor occurs when process flow crosses the packed catalyst bed installed between the two concentric perforated screens during operation. This pressure drop generates the lateral bed stress against the reactor’s perforated screens to shift. The pressure drop will further grow as catalyst attrition increases in production. For an outward radial flow, the pressure drop may exert higher stresses to the outer screen as the packed bed is pushed toward it. An extreme case is when the entire catalyst bed could be pinned to the outer screen of the reactor by enough pressure drop. This could cause the internal components to be overly stressed on the excessive bed load, for which the components might not have been designed adequately. Predicting how radial pressure drop impacts the bed stress and shifts the load distribution is important in preventing mechanical failure during operation. In this study, an analytical model is derived based on Janssen’s theory, a classical semi-empirical granular solid material model, to examine a generic packed catalyst bed in an outward radical flow reactor. A modification to Janssen’s theory is introduced to include pressure drop in order to explore its effects on bed stress and load. The critical condition is derived.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
外向径向流反应器填料床应力的研究
在运行过程中,当工艺流穿过安装在两个同心穿孔筛网之间的填料催化剂床时,径向流反应器中的压降就会发生。这种压降会产生侧向床层应力,使反应器的穿孔筛板发生位移。随着生产中催化剂磨损的增加,压降将进一步增大。对于向外径向流动,当填料床被推向外筛时,压降可能会对外筛施加更高的应力。一种极端的情况是,整个催化剂床可以通过足够的压降固定在反应器的外筛上。这可能会导致内部组件在过度床载上受到过度压力,因此组件可能没有被充分设计。预测径向压降如何影响床层应力和改变负荷分布对于防止运行过程中的机械故障非常重要。在本研究中,基于Janssen的理论,一个经典的半经验颗粒固体材料模型,推导了一个分析模型,以研究外自由基流动反应器中的一般填料催化剂床。对杨森的理论进行了修正,以包括压降,以探讨其对床应力和负荷的影响。导出了临界条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the Study of Packed Catalyst Bed Stresses for Outward Radial Flow Reactors Alternative Design Approach by Finite Element Analysis for High Pressure Equipment A Review of Temperature Reduction Methods in Codes and Standards for Pipe Supports Elephant Foot Buckling Analysis of Large Unanchored Oil Storage Tanks With Tapered Shells Subjected to Foundation Settlement Development of Stress Intensification Factors for Collared Type Piping Joints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1