Visualizing data sets on the Grassmannian using self-organizing mappings

M. Kirby, C. Peterson
{"title":"Visualizing data sets on the Grassmannian using self-organizing mappings","authors":"M. Kirby, C. Peterson","doi":"10.1109/WSOM.2017.8020003","DOIUrl":null,"url":null,"abstract":"We extend the self-organizing mapping algorithm to the problem of visualizing data on Grassmann manifolds. In this setting, a collection of k points in n-dimensions is represented by a k-dimensional subspace, e.g., via the singular value or QR-decompositions. Data assembled in this way is challenging to visualize given abstract points on the Grassmannian do not reside in Euclidean space. The extension of the SOM algorithm to this geometric setting only requires that distances between two points can be measured and that any given point can be moved towards a presented pattern. The similarity between two points on the Grassmannian is measured in terms of the principal angles between subspaces, e.g., the chordal distance. Further, we employ a formula for moving one subspace towards another along the shortest path, i.e., the geodesic between two points on the Grassmannian. This enables a faithful implementation of the SOM approach for visualizing data consisting of k-dimensional subspaces of n-dimensional Euclidean space. We illustrate the resulting algorithm on a hyperspectral imaging application.","PeriodicalId":130086,"journal":{"name":"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSOM.2017.8020003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

We extend the self-organizing mapping algorithm to the problem of visualizing data on Grassmann manifolds. In this setting, a collection of k points in n-dimensions is represented by a k-dimensional subspace, e.g., via the singular value or QR-decompositions. Data assembled in this way is challenging to visualize given abstract points on the Grassmannian do not reside in Euclidean space. The extension of the SOM algorithm to this geometric setting only requires that distances between two points can be measured and that any given point can be moved towards a presented pattern. The similarity between two points on the Grassmannian is measured in terms of the principal angles between subspaces, e.g., the chordal distance. Further, we employ a formula for moving one subspace towards another along the shortest path, i.e., the geodesic between two points on the Grassmannian. This enables a faithful implementation of the SOM approach for visualizing data consisting of k-dimensional subspaces of n-dimensional Euclidean space. We illustrate the resulting algorithm on a hyperspectral imaging application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用自组织映射在Grassmannian上可视化数据集
我们将自组织映射算法推广到格拉斯曼流形上数据的可视化问题。在这种情况下,n维的k个点的集合由k维子空间表示,例如,通过奇异值或qr分解。由于格拉斯曼曲线上的抽象点并不存在于欧几里得空间中,以这种方式组装的数据很难可视化。将SOM算法扩展到这种几何设置只需要测量两点之间的距离,并且任何给定的点都可以移动到所呈现的模式。格拉斯曼曲线上两点之间的相似性是用子空间之间的主角来度量的,例如弦距。进一步,我们采用了沿最短路径(即格拉斯曼曲线上两点之间的测地线)将一个子空间移动到另一个子空间的公式。这可以忠实地实现SOM方法,用于可视化由n维欧几里德空间的k维子空间组成的数据。我们在一个高光谱成像应用中说明了所得算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Empirical evaluation of gradient methods for matrix learning vector quantization Fusion of deep learning architectures, multilayer feedforward networks and learning vector quantizers for deep classification learning Prototypes and matrix relevance learning in complex fourier space Imputation of reactive silica and available alumina in bauxites by self-organizing maps An evolutionary building algorithm for Deep Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1