{"title":"An evolutionary building algorithm for Deep Neural Networks","authors":"R. Zemouri","doi":"10.1109/WSOM.2017.8020002","DOIUrl":null,"url":null,"abstract":"The increase of the computer power has contributed significantly to the development of the Deep Neural Networks. However, the training phase is more difficult since there are many hidden layers with many connections. The aim of this paper is to improve the learning procedure for Deep Neural Networks. A new method for building an evolutionary DNN is presented. With our method, the user does not have to arbitrary specify the number of hidden layers nor the number of neurons per layer. Illustrative examples are provided to support the theoretical analysis.","PeriodicalId":130086,"journal":{"name":"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSOM.2017.8020002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
The increase of the computer power has contributed significantly to the development of the Deep Neural Networks. However, the training phase is more difficult since there are many hidden layers with many connections. The aim of this paper is to improve the learning procedure for Deep Neural Networks. A new method for building an evolutionary DNN is presented. With our method, the user does not have to arbitrary specify the number of hidden layers nor the number of neurons per layer. Illustrative examples are provided to support the theoretical analysis.