Concurrent Katz Centrality for Streaming Graphs

Chunxing Yin, E. J. Riedy
{"title":"Concurrent Katz Centrality for Streaming Graphs","authors":"Chunxing Yin, E. J. Riedy","doi":"10.1109/HPEC.2019.8916572","DOIUrl":null,"url":null,"abstract":"Most current frameworks for streaming graph analysis “stop the world” and halt ingesting data while updating analysis results. Others add overhead for different forms of version control. In both methods, adding additional analysis kernels adds additional overhead to the entire system. A new formal model of concurrent analysis lets some algorithms, those valid for the model, update results concurrently with data ingest without synchronization. Additional kernels incur very little overhead. Here we present the first experimental results for the new model, considering the performance and result latency of updating Katz centrality on a low-power edge platform. The Katz centrality values remain close to the synchronous algorithm while reducing latency delay from 12.8$\\times $ to 179$\\times $.","PeriodicalId":184253,"journal":{"name":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2019.8916572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Most current frameworks for streaming graph analysis “stop the world” and halt ingesting data while updating analysis results. Others add overhead for different forms of version control. In both methods, adding additional analysis kernels adds additional overhead to the entire system. A new formal model of concurrent analysis lets some algorithms, those valid for the model, update results concurrently with data ingest without synchronization. Additional kernels incur very little overhead. Here we present the first experimental results for the new model, considering the performance and result latency of updating Katz centrality on a low-power edge platform. The Katz centrality values remain close to the synchronous algorithm while reducing latency delay from 12.8$\times $ to 179$\times $.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
流图的并发Katz中心性
大多数当前的流图分析框架“停止世界”,在更新分析结果时停止摄取数据。另一些则为不同形式的版本控制增加了开销。在这两种方法中,添加额外的分析内核会给整个系统增加额外的开销。一种新的形式化的并发分析模型允许一些对该模型有效的算法与数据摄取同时更新结果,而无需同步。额外的内核只会产生很少的开销。在这里,我们给出了新模型的第一个实验结果,考虑了在低功耗边缘平台上更新Katz中心性的性能和结果延迟。Katz中心性值仍然接近同步算法,同时将延迟从12.8$\times $减少到179$\times $。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[HPEC 2019 Copyright notice] Concurrent Katz Centrality for Streaming Graphs Cyber Baselining: Statistical properties of cyber time series and the search for stability Emerging Applications of 3D Integration and Approximate Computing in High-Performance Computing Systems: Unique Security Vulnerabilities Target-based Resource Allocation for Deep Learning Applications in a Multi-tenancy System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1