Arabic Automatic Speech Recognition Enhancement

Basem H. A. Ahmed, A. S. Ghabayen
{"title":"Arabic Automatic Speech Recognition Enhancement","authors":"Basem H. A. Ahmed, A. S. Ghabayen","doi":"10.1109/PICICT.2017.12","DOIUrl":null,"url":null,"abstract":"In this paper, we propose three approaches for Arabic automatic speech recognition. For pronunciation modeling, we propose a pronunciation variant generation with decision tree. For acoustic modeling, we propose the Hybrid approach to adapt the native acoustic model using another native acoustic model. Regarding the language model, we improve the language model using processed text. The experimental results show that the proposed pronunciation model approach has reduction in WER around 1%. The acoustic modeling reduce the WER by 1.2% and the adapted language modeling show reduction in WER by 1.9%.","PeriodicalId":259869,"journal":{"name":"2017 Palestinian International Conference on Information and Communication Technology (PICICT)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Palestinian International Conference on Information and Communication Technology (PICICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PICICT.2017.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In this paper, we propose three approaches for Arabic automatic speech recognition. For pronunciation modeling, we propose a pronunciation variant generation with decision tree. For acoustic modeling, we propose the Hybrid approach to adapt the native acoustic model using another native acoustic model. Regarding the language model, we improve the language model using processed text. The experimental results show that the proposed pronunciation model approach has reduction in WER around 1%. The acoustic modeling reduce the WER by 1.2% and the adapted language modeling show reduction in WER by 1.9%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
阿拉伯语自动语音识别增强
本文提出了三种阿拉伯语自动语音识别方法。在语音建模方面,我们提出了一种基于决策树的语音变体生成方法。对于声学建模,我们提出了混合方法,使用另一个本地声学模型来适应本地声学模型。在语言模型方面,我们使用经过处理的文本来改进语言模型。实验结果表明,所提出的语音模型方法的WER降低了1%左右。声学模型将WER降低了1.2%,而适应语言模型显示WER降低了1.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Precision Agriculture for Greenhouses Using a Wireless Sensor Network A New Set of Features for Detecting Router Advertisement Flooding Attacks Automatic Arabic Text Summarization for Large Scale Multiple Documents Using Genetic Algorithm and MapReduce Review on Detection Techniques against DDoS Attacks on a Software-Defined Networking Controller Arabic Opinion Mining Using Distributed Representations of Documents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1