Train&align: A new online tool for automatic phonetic alignment

Sandrine Brognaux, Sophie Roekhaut, Thomas Drugman, Richard Beaufort
{"title":"Train&align: A new online tool for automatic phonetic alignment","authors":"Sandrine Brognaux, Sophie Roekhaut, Thomas Drugman, Richard Beaufort","doi":"10.1109/SLT.2012.6424260","DOIUrl":null,"url":null,"abstract":"Several automatic phonetic alignment tools have been proposed in the literature. They usually rely on pre-trained speaker-independent models to align new corpora. Their drawback is that they cover a very limited number of languages and might not perform properly for different speaking styles. This paper presents a new tool for automatic phonetic alignment available online. Its specificity is that it trains the model directly on the corpus to align, which makes it applicable to any language and speaking style. Experiments on three corpora show that it provides results comparable to other existing tools. It also allows the tuning of some training parameters. The use of tied-state triphones, for example, shows further improvement of about 1.5% for a 20 ms threshold. A manually-aligned part of the corpus can also be used as bootstrap to improve the model quality. Alignment rates were found to significantly increase, up to 20%, using only 30 seconds of bootstrapping data.","PeriodicalId":375378,"journal":{"name":"2012 IEEE Spoken Language Technology Workshop (SLT)","volume":"142 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Spoken Language Technology Workshop (SLT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2012.6424260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

Several automatic phonetic alignment tools have been proposed in the literature. They usually rely on pre-trained speaker-independent models to align new corpora. Their drawback is that they cover a very limited number of languages and might not perform properly for different speaking styles. This paper presents a new tool for automatic phonetic alignment available online. Its specificity is that it trains the model directly on the corpus to align, which makes it applicable to any language and speaking style. Experiments on three corpora show that it provides results comparable to other existing tools. It also allows the tuning of some training parameters. The use of tied-state triphones, for example, shows further improvement of about 1.5% for a 20 ms threshold. A manually-aligned part of the corpus can also be used as bootstrap to improve the model quality. Alignment rates were found to significantly increase, up to 20%, using only 30 seconds of bootstrapping data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Train&align:一个新的自动语音对齐在线工具
文献中提出了几种自动语音对齐工具。他们通常依靠预先训练的独立于说话人的模型来对齐新的语料库。它们的缺点是,它们涵盖的语言数量非常有限,可能不适用于不同的口语风格。本文介绍了一种新的在线语音自动对齐工具。它的特殊之处在于它直接在语料库上训练模型来对齐,这使得它适用于任何语言和说话风格。在三个语料库上的实验表明,该方法的结果与其他现有工具相当。它还允许调整一些训练参数。例如,使用固定状态的三音耳机,在20毫秒的阈值下显示出约1.5%的进一步改善。语料库的手动对齐部分也可以用作引导以提高模型质量。结果发现,仅使用30秒的引导数据,对齐率就显著提高了20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining criteria for the detection of incorrect entries of non-native speech in the context of foreign language learning Two-layer mutually reinforced random walk for improved multi-party meeting summarization Train&align: A new online tool for automatic phonetic alignment Automatic detection and correction of syntax-based prosody annotation errors Word segmentation through cross-lingual word-to-phoneme alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1