{"title":"High-level optimization of integer multipliers over a finite bit-width with verification capabilities","authors":"O. Sarbishei, M. Tabandeh, B. Alizadeh, M. Fujita","doi":"10.1109/MEMCOD.2009.5185378","DOIUrl":null,"url":null,"abstract":"Integer multipliers with finite output bit-widths are widely used in many Digital Signal Processing (DSP) applications. In such circuits high-level optimizations like Residue Number System (RNS) can be utilized to achieve more efficient architectures compared to the conventional binary representations. This paper presents an efficient high-level Don't-Care Optimization (DC-Opt) method for integer multipliers and in general Multiply Accumulator (MAC) units when the output result is limited to a finite bit-width. This high-level optimization approach can then be combined with logic optimizations at gate-level. Experimental results have shown major improvements in terms of area and latency compared to the conventional optimization approaches.","PeriodicalId":163970,"journal":{"name":"2009 7th IEEE/ACM International Conference on Formal Methods and Models for Co-Design","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 7th IEEE/ACM International Conference on Formal Methods and Models for Co-Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMCOD.2009.5185378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Integer multipliers with finite output bit-widths are widely used in many Digital Signal Processing (DSP) applications. In such circuits high-level optimizations like Residue Number System (RNS) can be utilized to achieve more efficient architectures compared to the conventional binary representations. This paper presents an efficient high-level Don't-Care Optimization (DC-Opt) method for integer multipliers and in general Multiply Accumulator (MAC) units when the output result is limited to a finite bit-width. This high-level optimization approach can then be combined with logic optimizations at gate-level. Experimental results have shown major improvements in terms of area and latency compared to the conventional optimization approaches.