{"title":"Vertex-blend attribute compression","authors":"Bastian Kuth, Quirin Meyer","doi":"10.2312/hpg.20211282","DOIUrl":null,"url":null,"abstract":"Skeleton-based animations require per-vertex attributes called vertex-blend attributes. They consist of a weight tuple and a bone index tuple. With meshes becoming more complex, vertex-blend attributes call for compression. However, no technique exists that exploits their special properties. To this end, we propose a novel and optimal weight compression method called Optimal Simplex Sampling and a novel bone index compression. For our test models, we compress bone index tuples between 2.3:1 and 3.5:1 and weight tuples between 1.6:1 and 2.5:1 while being visually lossless. We show that our representations can speed rendering and reduces GPU memory requirements over uncompressed representations with a similar error. Further, our representations compress well with general-purpose codecs making them suitable for offline-storage and streaming.","PeriodicalId":354787,"journal":{"name":"Proceedings of the Conference on High-Performance Graphics","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Conference on High-Performance Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/hpg.20211282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Skeleton-based animations require per-vertex attributes called vertex-blend attributes. They consist of a weight tuple and a bone index tuple. With meshes becoming more complex, vertex-blend attributes call for compression. However, no technique exists that exploits their special properties. To this end, we propose a novel and optimal weight compression method called Optimal Simplex Sampling and a novel bone index compression. For our test models, we compress bone index tuples between 2.3:1 and 3.5:1 and weight tuples between 1.6:1 and 2.5:1 while being visually lossless. We show that our representations can speed rendering and reduces GPU memory requirements over uncompressed representations with a similar error. Further, our representations compress well with general-purpose codecs making them suitable for offline-storage and streaming.