Nutritional Diet Decision Using Multi-objective Difference Evolutionary Algorithm

Zhenkui Pei, Zhen Liu
{"title":"Nutritional Diet Decision Using Multi-objective Difference Evolutionary Algorithm","authors":"Zhenkui Pei, Zhen Liu","doi":"10.1109/CINC.2009.175","DOIUrl":null,"url":null,"abstract":"The nutrition diet decision problems on Multi-objective optimization are solved by using Compromise Difference Evolutionary (DE) algorithm. This method is equipped with a domination selection operator to enhance its performance by favoring non–dominated individuals in the populations. DE is a population based search algorithm, which is an improved version of Genetic Algorithm (GA). Simulations carried out involved solving nutrition decision using a method that relationships of dominant to determine the fitness, and finding Pareto optimum set for the nutrition decision problem. Compromise Difference Evolutionary found to be stable and more accurate in optimization compared to simple GA.","PeriodicalId":173506,"journal":{"name":"2009 International Conference on Computational Intelligence and Natural Computing","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Computational Intelligence and Natural Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINC.2009.175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The nutrition diet decision problems on Multi-objective optimization are solved by using Compromise Difference Evolutionary (DE) algorithm. This method is equipped with a domination selection operator to enhance its performance by favoring non–dominated individuals in the populations. DE is a population based search algorithm, which is an improved version of Genetic Algorithm (GA). Simulations carried out involved solving nutrition decision using a method that relationships of dominant to determine the fitness, and finding Pareto optimum set for the nutrition decision problem. Compromise Difference Evolutionary found to be stable and more accurate in optimization compared to simple GA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多目标差分进化算法的营养饮食决策
采用折衷差分进化(DE)算法求解多目标优化的营养膳食决策问题。该方法采用优势选择算子,通过在种群中选择非优势个体来提高算法的性能。DE是一种基于种群的搜索算法,是遗传算法(Genetic algorithm, GA)的改进版本。采用优势关系确定适应度的方法求解营养决策,并求出营养决策问题的帕累托最优集。折中差分进化算法比简单遗传算法更稳定、更精确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Edge Detection Algorithm for Uneven Lighting Image Based on Vision Theory Independent Global Constraints Web Service Composition Optimization Based on Color Petri Net Summarization for Internet News Based on Clustering Algorithm Some Characterizations about 4-band Symmetric Cardinal Orthogonal Scaling Function Nutritional Diet Decision Using Multi-objective Difference Evolutionary Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1