Zahra Solatidehkordi, Jayroop Ramesh, Michel Pasquier, A. Sagahyroon, F. Aloul
{"title":"A Survey of Machine Learning Approaches for Detecting Depression Using Smartphone Data","authors":"Zahra Solatidehkordi, Jayroop Ramesh, Michel Pasquier, A. Sagahyroon, F. Aloul","doi":"10.1109/IAICT55358.2022.9887526","DOIUrl":null,"url":null,"abstract":"Depression is one of the most common mental health issues worldwide and has only become more widespread after the emergence of the Covid-19 pandemic. Although depression can be treated through various methods, it often goes undiagnosed and therefore untreated, forcing individuals to go through life with a condition that is nothing short of debilitating. With mobile phones being an integral part of people’s lives, they can provide valuable information about a person’s habits and behaviors, which can then be used to detect depressive tendencies. This paper provides a review of several studies conducted in recent years on the possibility of using machine learning and smartphone data to detect depression.","PeriodicalId":154027,"journal":{"name":"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAICT55358.2022.9887526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Depression is one of the most common mental health issues worldwide and has only become more widespread after the emergence of the Covid-19 pandemic. Although depression can be treated through various methods, it often goes undiagnosed and therefore untreated, forcing individuals to go through life with a condition that is nothing short of debilitating. With mobile phones being an integral part of people’s lives, they can provide valuable information about a person’s habits and behaviors, which can then be used to detect depressive tendencies. This paper provides a review of several studies conducted in recent years on the possibility of using machine learning and smartphone data to detect depression.