A Survey of Machine Learning Approaches for Detecting Depression Using Smartphone Data

Zahra Solatidehkordi, Jayroop Ramesh, Michel Pasquier, A. Sagahyroon, F. Aloul
{"title":"A Survey of Machine Learning Approaches for Detecting Depression Using Smartphone Data","authors":"Zahra Solatidehkordi, Jayroop Ramesh, Michel Pasquier, A. Sagahyroon, F. Aloul","doi":"10.1109/IAICT55358.2022.9887526","DOIUrl":null,"url":null,"abstract":"Depression is one of the most common mental health issues worldwide and has only become more widespread after the emergence of the Covid-19 pandemic. Although depression can be treated through various methods, it often goes undiagnosed and therefore untreated, forcing individuals to go through life with a condition that is nothing short of debilitating. With mobile phones being an integral part of people’s lives, they can provide valuable information about a person’s habits and behaviors, which can then be used to detect depressive tendencies. This paper provides a review of several studies conducted in recent years on the possibility of using machine learning and smartphone data to detect depression.","PeriodicalId":154027,"journal":{"name":"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAICT55358.2022.9887526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Depression is one of the most common mental health issues worldwide and has only become more widespread after the emergence of the Covid-19 pandemic. Although depression can be treated through various methods, it often goes undiagnosed and therefore untreated, forcing individuals to go through life with a condition that is nothing short of debilitating. With mobile phones being an integral part of people’s lives, they can provide valuable information about a person’s habits and behaviors, which can then be used to detect depressive tendencies. This paper provides a review of several studies conducted in recent years on the possibility of using machine learning and smartphone data to detect depression.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用智能手机数据检测抑郁症的机器学习方法的调查
抑郁症是世界上最常见的心理健康问题之一,在新冠肺炎大流行出现后才变得更加普遍。虽然抑郁症可以通过各种方法治疗,但它往往没有得到诊断,因此得不到治疗,迫使个人在一种非常虚弱的状态下度过一生。随着手机成为人们生活中不可或缺的一部分,它们可以提供关于一个人的习惯和行为的有价值的信息,这些信息可以用来检测抑郁倾向。本文回顾了近年来关于使用机器学习和智能手机数据检测抑郁症的可能性的几项研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Survey of Machine Learning Approaches for Detecting Depression Using Smartphone Data Design of a Personal Digital Assistant for the Visually Challenged AutoSW: a new automated sliding window-based change point detection method for sensor data DOTA 2 Win Loss Prediction from Item and Hero Data with Machine Learning Hardware Realization of Sigmoid and Hyperbolic Tangent Activation Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1