ChatGPT: A Threat Against the CIA Triad of Cyber Security

M. Chowdhury, Nafiz Rifat, M. Ahsan, Shadman Latif, Rahul Gomes, Md Saifur Rahman
{"title":"ChatGPT: A Threat Against the CIA Triad of Cyber Security","authors":"M. Chowdhury, Nafiz Rifat, M. Ahsan, Shadman Latif, Rahul Gomes, Md Saifur Rahman","doi":"10.1109/eIT57321.2023.10187355","DOIUrl":null,"url":null,"abstract":"The AI revolution has brought significant changes to society. AI-powered systems can analyze enormous amounts of data to optimize processes, improve accuracy, and cut costs. Nevertheless, addressing potential hazards and ethical issues related to AI enabled technologies, such as bias and job displacement, is essential. This paper presented an example of an AI revolution threatening cyber security, the ChatGPT. ChatGPT, a chatbot, can generate essays or code on demand. However, ChatGPT's security system can be circumvented or deceived to generate malicious content. Moreover, these AI enabled tools to have design issues, e.g., accuracy issues. As a result, ChatGPT can be accused of violating the confidentiality of information (privacy invasion), producing inaccurate information, and potentially facilitating attack tool generation that can compromise the availability principle of the CIA triad. This paper presents ChatGPT as a threat against the CIA triad principle by focusing on violating these principles.","PeriodicalId":113717,"journal":{"name":"2023 IEEE International Conference on Electro Information Technology (eIT)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Electro Information Technology (eIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eIT57321.2023.10187355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The AI revolution has brought significant changes to society. AI-powered systems can analyze enormous amounts of data to optimize processes, improve accuracy, and cut costs. Nevertheless, addressing potential hazards and ethical issues related to AI enabled technologies, such as bias and job displacement, is essential. This paper presented an example of an AI revolution threatening cyber security, the ChatGPT. ChatGPT, a chatbot, can generate essays or code on demand. However, ChatGPT's security system can be circumvented or deceived to generate malicious content. Moreover, these AI enabled tools to have design issues, e.g., accuracy issues. As a result, ChatGPT can be accused of violating the confidentiality of information (privacy invasion), producing inaccurate information, and potentially facilitating attack tool generation that can compromise the availability principle of the CIA triad. This paper presents ChatGPT as a threat against the CIA triad principle by focusing on violating these principles.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ChatGPT:对CIA网络安全三合会的威胁
人工智能革命给社会带来了巨大的变化。人工智能驱动的系统可以分析大量数据,以优化流程、提高准确性并降低成本。然而,解决与人工智能技术相关的潜在危险和伦理问题,如偏见和工作取代,是至关重要的。本文介绍了威胁网络安全的人工智能革命的一个例子,即ChatGPT。聊天机器人ChatGPT可以根据需要生成文章或代码。然而,ChatGPT的安全系统可以被绕过或欺骗来生成恶意内容。此外,这些人工智能工具存在设计问题,例如准确性问题。因此,ChatGPT可能被指控违反了信息的机密性(隐私侵犯),产生了不准确的信息,并可能促进了攻击工具的生成,从而损害了CIA黑社会的可用性原则。本文将ChatGPT作为对CIA三位一体原则的威胁,重点关注违反这些原则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Correlation of Egg counts, Micro-nutrients, and NDVI Distribution for Accurate Tracking of SCN Population Density Detection Supervised Deep Learning Models for Detecting GPS Spoofing Attacks on Unmanned Aerial Vehicles ChatGPT: A Threat Against the CIA Triad of Cyber Security Smart UX-design for Rescue Operations Wearable - A Knowledge Graph Informed Visualization Approach for Information Retrieval in Emergency Situations Comparative Study of Deep Learning LSTM and 1D-CNN Models for Real-time Flood Prediction in Red River of the North, USA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1