{"title":"Fault Sensitivity Analysis Against Elliptic Curve Cryptosystems","authors":"Hikaru Sakamoto, Yang Li, K. Ohta, K. Sakiyama","doi":"10.1109/FDTC.2011.17","DOIUrl":null,"url":null,"abstract":"In this paper, we present a fault-based security evaluation for an Elliptic Curve Cryptography (ECC) implementation using the Montgomery Powering Ladder (MPL). We focus in particular on the L´opez-Dahab algorithm, which is used to calculate a point on an elliptic curve efficiently without using the y - coordinate. Several previous fault analysis attacks cannot be applied to the ECC implementation employing the L´opez-Dahab algorithm in a straight-forward manner. In this paper, we evaluate the security of the L´opez-Dahab algorithm using Fault Sensitivity Analysis (FSA). Although the initial work on FSA was applied only to an Advanced Encryption Standard (AES) implementation, we apply the technique to the ECC implementation. Consequently, we found a vulnerability to FSA for the ECC implementation using the L´opez-Dahab algorithm.","PeriodicalId":150423,"journal":{"name":"2011 Workshop on Fault Diagnosis and Tolerance in Cryptography","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Workshop on Fault Diagnosis and Tolerance in Cryptography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FDTC.2011.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
In this paper, we present a fault-based security evaluation for an Elliptic Curve Cryptography (ECC) implementation using the Montgomery Powering Ladder (MPL). We focus in particular on the L´opez-Dahab algorithm, which is used to calculate a point on an elliptic curve efficiently without using the y - coordinate. Several previous fault analysis attacks cannot be applied to the ECC implementation employing the L´opez-Dahab algorithm in a straight-forward manner. In this paper, we evaluate the security of the L´opez-Dahab algorithm using Fault Sensitivity Analysis (FSA). Although the initial work on FSA was applied only to an Advanced Encryption Standard (AES) implementation, we apply the technique to the ECC implementation. Consequently, we found a vulnerability to FSA for the ECC implementation using the L´opez-Dahab algorithm.
在本文中,我们提出了一种基于故障的椭圆曲线加密(ECC)实现的安全性评估方法,该方法使用Montgomery power Ladder (MPL)。我们特别关注L´opez-Dahab算法,该算法用于在不使用y坐标的情况下有效地计算椭圆曲线上的点。以前的几种故障分析攻击不能直接应用于采用L´opez-Dahab算法的ECC实现。在本文中,我们使用故障灵敏度分析(FSA)来评估L´opez-Dahab算法的安全性。虽然FSA的初始工作仅应用于高级加密标准(AES)实现,但我们将该技术应用于ECC实现。因此,我们发现了使用L´opez-Dahab算法实现ECC的FSA漏洞。