Multiplicative angular margin loss for text-based person search

Peng Zhang, Deqiang Ouyang, Feiyu Chen, Jie Shao
{"title":"Multiplicative angular margin loss for text-based person search","authors":"Peng Zhang, Deqiang Ouyang, Feiyu Chen, Jie Shao","doi":"10.1145/3444685.3446314","DOIUrl":null,"url":null,"abstract":"Text-based person search aims at retrieving the most relevant pedestrian images from database in response to a query in form of natural language description. Existing algorithms mainly focus on embedding textual and visual features into a common semantic space so that the similarity score of features from different modalities can be computed directly. Softmax loss is widely adopted to classify textual and visual features into a correct category in the joint embedding space. However, softmax loss can only help classify features but not increase the intra-class compactness and inter-class discrepancy. To this end, we propose multiplicative angular margin (MAM) loss to learn angularly discriminative features for each identity. The multiplicative angular margin loss penalizes the angle between feature vector and its corresponding classifier vector to learn more discriminative feature. Moreover, to focus more on informative image-text pair, we propose pairwise similarity weighting (PSW) loss to assign higher weight to informative pairs. Extensive experimental evaluations have been conducted on the CUHK-PEDES dataset over our proposed losses. The results show the superiority of our proposed method. Code is available at https://github.com/pengzhanguestc/MAM_loss.","PeriodicalId":119278,"journal":{"name":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd ACM International Conference on Multimedia in Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3444685.3446314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Text-based person search aims at retrieving the most relevant pedestrian images from database in response to a query in form of natural language description. Existing algorithms mainly focus on embedding textual and visual features into a common semantic space so that the similarity score of features from different modalities can be computed directly. Softmax loss is widely adopted to classify textual and visual features into a correct category in the joint embedding space. However, softmax loss can only help classify features but not increase the intra-class compactness and inter-class discrepancy. To this end, we propose multiplicative angular margin (MAM) loss to learn angularly discriminative features for each identity. The multiplicative angular margin loss penalizes the angle between feature vector and its corresponding classifier vector to learn more discriminative feature. Moreover, to focus more on informative image-text pair, we propose pairwise similarity weighting (PSW) loss to assign higher weight to informative pairs. Extensive experimental evaluations have been conducted on the CUHK-PEDES dataset over our proposed losses. The results show the superiority of our proposed method. Code is available at https://github.com/pengzhanguestc/MAM_loss.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于文本的人员搜索的乘法角边损失
基于文本的人物搜索旨在以自然语言描述的形式从数据库中检索与查询最相关的行人图像。现有算法主要是将文本特征和视觉特征嵌入到一个共同的语义空间中,从而直接计算不同模态特征的相似度得分。Softmax loss被广泛用于在联合嵌入空间中将文本和视觉特征分类到正确的类别中。然而,softmax损失只能帮助分类特征,而不能增加类内紧密度和类间差异。为此,我们提出了乘法角边损失(MAM)来学习每个恒等式的角判别特征。乘法角边损失对特征向量与其对应的分类器向量之间的角度进行惩罚,以学习更多的判别特征。此外,为了更多地关注信息图像-文本对,我们提出了成对相似加权(PSW)损失,为信息对分配更高的权重。针对我们提出的损失,我们在中大- pedes数据集上进行了广泛的实验评估。结果表明了该方法的优越性。代码可从https://github.com/pengzhanguestc/MAM_loss获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Storyboard relational model for group activity recognition Objective object segmentation visual quality evaluation based on pixel-level and region-level characteristics Multiplicative angular margin loss for text-based person search Distilling knowledge in causal inference for unbiased visual question answering A large-scale image retrieval system for everyday scenes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1