A Learning-based Iterative Control Framework for Controlling a Robot Arm with Pneumatic Artificial Muscles

Hao Ma, Dieter Büchler, B. Scholkopf, Michael Muehlebach
{"title":"A Learning-based Iterative Control Framework for Controlling a Robot Arm with Pneumatic Artificial Muscles","authors":"Hao Ma, Dieter Büchler, B. Scholkopf, Michael Muehlebach","doi":"10.15607/rss.2022.xviii.029","DOIUrl":null,"url":null,"abstract":"—In this work, we propose a new learning-based iterative control (IC) framework that enables a complex soft-robotic arm to track trajectories accurately. Compared to tra- ditional iterative learning control (ILC), which operates on a single fixed reference trajectory, we use a deep learning approach to generalize across various reference trajectories. The resulting nonlinear mapping computes feedforward actions and is used in a two degrees of freedom control design. Our method incorporates prior knowledge about the system dynamics and by learning only feedforward actions, it mitigates the risk of instability. We demonstrate a low sample complexity and an excellent tracking performance in real-world experiments. The experiments are carried out on a custom-made robot arm with four degrees of freedom that is actuated with pneumatic artificial muscles. The experiments include high acceleration and high velocity motion.","PeriodicalId":340265,"journal":{"name":"Robotics: Science and Systems XVIII","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics: Science and Systems XVIII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15607/rss.2022.xviii.029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

—In this work, we propose a new learning-based iterative control (IC) framework that enables a complex soft-robotic arm to track trajectories accurately. Compared to tra- ditional iterative learning control (ILC), which operates on a single fixed reference trajectory, we use a deep learning approach to generalize across various reference trajectories. The resulting nonlinear mapping computes feedforward actions and is used in a two degrees of freedom control design. Our method incorporates prior knowledge about the system dynamics and by learning only feedforward actions, it mitigates the risk of instability. We demonstrate a low sample complexity and an excellent tracking performance in real-world experiments. The experiments are carried out on a custom-made robot arm with four degrees of freedom that is actuated with pneumatic artificial muscles. The experiments include high acceleration and high velocity motion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
气动人工肌肉机械臂的学习迭代控制框架
在这项工作中,我们提出了一种新的基于学习的迭代控制(IC)框架,使复杂的软机械臂能够准确地跟踪轨迹。与传统的迭代学习控制(ILC)在单个固定参考轨迹上运行相比,我们使用深度学习方法在各种参考轨迹上进行泛化。由此产生的非线性映射计算前馈动作,并用于二自由度控制设计。我们的方法结合了关于系统动力学的先验知识,并且通过只学习前馈动作,它降低了不稳定的风险。我们在实际实验中证明了低样本复杂度和出色的跟踪性能。实验是在一个定制的四自由度机械臂上进行的,该机械臂由气动人造肌肉驱动。实验包括高加速度和高速运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Underwater Robot-To-Human Communication Via Motion: Implementation and Full-Loop Human Interface Evaluation Meta Value Learning for Fast Policy-Centric Optimal Motion Planning A Learning-based Iterative Control Framework for Controlling a Robot Arm with Pneumatic Artificial Muscles Aerial Layouting: Design and Control of a Compliant and Actuated End-Effector for Precise In-flight Marking on Ceilings Occupancy-SLAM: Simultaneously Optimizing Robot Poses and Continuous Occupancy Map
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1