MEC-Based Energy-Aware Distributed Feature Extraction for mHealth Applications with Strict Latency Requirements

Omar Hashash, S. Sharafeddine, Z. Dawy
{"title":"MEC-Based Energy-Aware Distributed Feature Extraction for mHealth Applications with Strict Latency Requirements","authors":"Omar Hashash, S. Sharafeddine, Z. Dawy","doi":"10.1109/ICCWorkshops50388.2021.9473646","DOIUrl":null,"url":null,"abstract":"Mobile health (mHealth) applications are expected to proliferate due to the recent advances in IoT sensing devices and wireless technologies. Monitoring brain signals using mobile electroencephalography (EEG) headsets provides opportunities for epileptic seizure detection and prediction using machine learning algorithms. To notify patients on time for taking preventive measures, it is vital to develop low latency solutions. Due to the limited computing and energy resources of mobile EEG headsets, we propose a distributed feature extraction method that relies on the user equipment (UE) and mobile edge computing (MEC) servers. We formulate an optimization problem for distributed feature extraction with a joint latency and energy objective function, and present an effective solution approach that captures performance trade-offs. Simulation results demonstrate the effectiveness of the proposed method as a function of different system and design parameters for an epileptic seizure prediction mHealth application.","PeriodicalId":127186,"journal":{"name":"2021 IEEE International Conference on Communications Workshops (ICC Workshops)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Communications Workshops (ICC Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCWorkshops50388.2021.9473646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Mobile health (mHealth) applications are expected to proliferate due to the recent advances in IoT sensing devices and wireless technologies. Monitoring brain signals using mobile electroencephalography (EEG) headsets provides opportunities for epileptic seizure detection and prediction using machine learning algorithms. To notify patients on time for taking preventive measures, it is vital to develop low latency solutions. Due to the limited computing and energy resources of mobile EEG headsets, we propose a distributed feature extraction method that relies on the user equipment (UE) and mobile edge computing (MEC) servers. We formulate an optimization problem for distributed feature extraction with a joint latency and energy objective function, and present an effective solution approach that captures performance trade-offs. Simulation results demonstrate the effectiveness of the proposed method as a function of different system and design parameters for an epileptic seizure prediction mHealth application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有严格延迟要求的移动医疗应用的基于mec的能量感知分布式特征提取
由于物联网传感设备和无线技术的最新进展,移动医疗(mHealth)应用预计将激增。使用移动脑电图(EEG)耳机监测脑信号为使用机器学习算法检测和预测癫痫发作提供了机会。为了及时通知患者采取预防措施,开发低延迟解决方案至关重要。针对移动脑电图头戴设备有限的计算和能量资源,提出了一种基于用户设备(UE)和移动边缘计算(MEC)服务器的分布式特征提取方法。我们提出了一个具有联合延迟和能量目标函数的分布式特征提取优化问题,并提出了一个捕获性能权衡的有效解决方案。仿真结果表明,该方法作为不同系统和设计参数的函数,在癫痫发作预测移动健康应用中是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
BML: An Efficient and Versatile Tool for BGP Dataset Collection Efficient and Privacy-Preserving Contact Tracing System for Covid-19 using Blockchain MEC-Based Energy-Aware Distributed Feature Extraction for mHealth Applications with Strict Latency Requirements Distributed Multi-Agent Learning for Service Function Chain Partial Offloading at the Edge A Deep Neural Network Based Environment Sensing in the Presence of Jammers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1