{"title":"A fast prediction-error detector for estimating sparse-spike sequences","authors":"G. Giannakis, J. Mendel, Xiaofeng Zhao","doi":"10.1109/ICASSP.1987.1169788","DOIUrl":null,"url":null,"abstract":"Based on the Maximum-Likelihood principle, we develop a locally optimal method for detecting the location and estimating the amplitude of spikes in a sequence, which are considered the random input of a known ARMA model. A Bernoulli-Gaussian product model is adopted for the sparse-spike sequence, and the available data consist of a single, noisy, output record. By employing a Prediction-Error formulation our iterative algorithm guarantees the increase of a unique likelihood function used for the combined estimation/detection problem. Amplitude estimation is carried out with Kalman smoothing techniques, and event detection is performed in two ways, as an event adder and as an event remover. Synthetic examples verify that our algorithm is self-initialized, consistent, and fast.","PeriodicalId":140810,"journal":{"name":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1987.1169788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
Based on the Maximum-Likelihood principle, we develop a locally optimal method for detecting the location and estimating the amplitude of spikes in a sequence, which are considered the random input of a known ARMA model. A Bernoulli-Gaussian product model is adopted for the sparse-spike sequence, and the available data consist of a single, noisy, output record. By employing a Prediction-Error formulation our iterative algorithm guarantees the increase of a unique likelihood function used for the combined estimation/detection problem. Amplitude estimation is carried out with Kalman smoothing techniques, and event detection is performed in two ways, as an event adder and as an event remover. Synthetic examples verify that our algorithm is self-initialized, consistent, and fast.