Revisiting Performance Measures for Cross-Modal Hashing

Hongya Wang, Shunxin Dai, Ming Du, Bo Xu, Mingyong Li
{"title":"Revisiting Performance Measures for Cross-Modal Hashing","authors":"Hongya Wang, Shunxin Dai, Ming Du, Bo Xu, Mingyong Li","doi":"10.1145/3512527.3531363","DOIUrl":null,"url":null,"abstract":"Recently, cross-modal hashing has attracted much attention due to its low storage cost and fast query speed. Mean Average Precision (MAP) is the most widely used performance measure for cross-modal hashing. However, we found that the MAP scores do not fully reflect the quality of the top-K results for cross-modal retrieval because it neglects multi-label information and overlooks the label semantic hierarchy. In view of this, we propose a new performance measure named Normalized Weighted Discounted Cumulative Gains (NWDCG) by extending Normalized Discounted Cumulative Gains (NDCG) using co-occurrence probability matrix. To verify the effectiveness of NWDCG, we conduct extensive experiments using three popular cross-modal hashing schemes over two publically available datasets.","PeriodicalId":179895,"journal":{"name":"Proceedings of the 2022 International Conference on Multimedia Retrieval","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3512527.3531363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, cross-modal hashing has attracted much attention due to its low storage cost and fast query speed. Mean Average Precision (MAP) is the most widely used performance measure for cross-modal hashing. However, we found that the MAP scores do not fully reflect the quality of the top-K results for cross-modal retrieval because it neglects multi-label information and overlooks the label semantic hierarchy. In view of this, we propose a new performance measure named Normalized Weighted Discounted Cumulative Gains (NWDCG) by extending Normalized Discounted Cumulative Gains (NDCG) using co-occurrence probability matrix. To verify the effectiveness of NWDCG, we conduct extensive experiments using three popular cross-modal hashing schemes over two publically available datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
回顾跨模态哈希的性能度量
近年来,跨模态哈希以其低廉的存储成本和快速的查询速度备受关注。平均精度(MAP)是跨模态哈希中使用最广泛的性能度量。然而,我们发现MAP分数并不能完全反映跨模态检索的top-K结果的质量,因为它忽略了多标签信息并忽略了标签语义层次。鉴于此,我们利用共现概率矩阵对归一化贴现累积增益(NDCG)进行扩展,提出了一种新的性能度量方法——归一化加权贴现累积增益(NWDCG)。为了验证NWDCG的有效性,我们在两个公开可用的数据集上使用三种流行的跨模态哈希方案进行了广泛的实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-Lifting: A Novel Framework for Unsupervised Voice-Face Association Learning DMPCANet: A Low Dimensional Aggregation Network for Visual Place Recognition Revisiting Performance Measures for Cross-Modal Hashing MFGAN: A Lightweight Fast Multi-task Multi-scale Feature-fusion Model based on GAN Weakly Supervised Fine-grained Recognition based on Combined Learning for Small Data and Coarse Label
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1