What Can be Seen is What You Get: Structure Aware Point Cloud Augmentation

Frederik Hasecke, Martin Alsfasser, A. Kummert
{"title":"What Can be Seen is What You Get: Structure Aware Point Cloud Augmentation","authors":"Frederik Hasecke, Martin Alsfasser, A. Kummert","doi":"10.1109/IV51971.2022.9827116","DOIUrl":null,"url":null,"abstract":"To train a well performing neural network for semantic segmentation, it is crucial to have a large dataset with available ground truth for the network to generalize on unseen data. In this paper we present novel point cloud augmentation methods to artificially diversify a dataset. Our sensor-centric methods keep the data structure consistent with the lidar sensor capabilities. Due to these new methods, we are able to enrich low-value data with high-value instances, as well as create entirely new scenes. We validate our methods on multiple neural networks with the public SemanticKITTI [3] dataset and demonstrate that all networks improve compared to their respective baseline. In addition, we show that our methods enable the use of very small datasets, saving annotation time, training time and the associated costs.","PeriodicalId":184622,"journal":{"name":"2022 IEEE Intelligent Vehicles Symposium (IV)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IV51971.2022.9827116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

To train a well performing neural network for semantic segmentation, it is crucial to have a large dataset with available ground truth for the network to generalize on unseen data. In this paper we present novel point cloud augmentation methods to artificially diversify a dataset. Our sensor-centric methods keep the data structure consistent with the lidar sensor capabilities. Due to these new methods, we are able to enrich low-value data with high-value instances, as well as create entirely new scenes. We validate our methods on multiple neural networks with the public SemanticKITTI [3] dataset and demonstrate that all networks improve compared to their respective baseline. In addition, we show that our methods enable the use of very small datasets, saving annotation time, training time and the associated costs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可以看到的是你得到的:结构感知点云增强
为了训练一个性能良好的神经网络进行语义分割,至关重要的是要有一个具有可用基础事实的大型数据集,以便网络对未见过的数据进行泛化。在本文中,我们提出了一种新的点云增强方法来人为地分散数据集。我们以传感器为中心的方法使数据结构与激光雷达传感器功能保持一致。由于这些新方法,我们能够用高价值的实例来丰富低价值的数据,以及创建全新的场景。我们使用公共SemanticKITTI[3]数据集在多个神经网络上验证了我们的方法,并证明所有网络与各自的基线相比都有所改善。此外,我们表明,我们的方法能够使用非常小的数据集,节省注释时间,训练时间和相关成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Conflict Mitigation for Cooperative Driving Control of Intelligent Vehicles Detecting vehicles in the dark in urban environments - A human benchmark A Sequential Decision-theoretic Method for Detecting Mobile Robots Localization Failures Scene Spatio-Temporal Graph Convolutional Network for Pedestrian Intention Estimation What Can be Seen is What You Get: Structure Aware Point Cloud Augmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1