EKSS: An efficient approach for similarity search

S. Gupta, A. Dwivedi, R. Issac, S. K. Agrawal
{"title":"EKSS: An efficient approach for similarity search","authors":"S. Gupta, A. Dwivedi, R. Issac, S. K. Agrawal","doi":"10.1109/ICCICT.2012.6398194","DOIUrl":null,"url":null,"abstract":"Nowadays, crucial task in data mining field in large multidimensional data has always been the similarity search problems. Similarity search involves both subsequences matching and whole sequence matching. In this paper, we present an approach which consider on how many dimensions the data point is similiar to the query point, the average distance of these dimensions of data point to the query point as well as efficiency with respect to time and space required with the dramatic increment of data size. The proposed approach involves dynamic selection of input parameters, covering both subsequences matching and whole sequence matching, suppressing the impact of high dissimilarities in few dimensions. Thus our proposed approach can help improving performance of existing data analysis technologies, such as financial market analysis, medical diagnosis and scientific and engineering database analysis as tremendous amount of data is generated in these disciplines.","PeriodicalId":319467,"journal":{"name":"2012 International Conference on Communication, Information & Computing Technology (ICCICT)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Communication, Information & Computing Technology (ICCICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCICT.2012.6398194","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, crucial task in data mining field in large multidimensional data has always been the similarity search problems. Similarity search involves both subsequences matching and whole sequence matching. In this paper, we present an approach which consider on how many dimensions the data point is similiar to the query point, the average distance of these dimensions of data point to the query point as well as efficiency with respect to time and space required with the dramatic increment of data size. The proposed approach involves dynamic selection of input parameters, covering both subsequences matching and whole sequence matching, suppressing the impact of high dissimilarities in few dimensions. Thus our proposed approach can help improving performance of existing data analysis technologies, such as financial market analysis, medical diagnosis and scientific and engineering database analysis as tremendous amount of data is generated in these disciplines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EKSS:一种高效的相似性搜索方法
目前,大多维数据的相似度搜索问题一直是数据挖掘领域的关键问题。相似性搜索包括子序列匹配和全序列匹配。在本文中,我们提出了一种方法,该方法考虑了数据点与查询点有多少维相似,这些数据点到查询点的平均距离以及随着数据大小的急剧增加所需的时间和空间效率。该方法采用动态选择输入参数的方法,涵盖了子序列匹配和全序列匹配,抑制了小维高度不相似度的影响。因此,我们提出的方法可以帮助提高现有数据分析技术的性能,例如金融市场分析,医疗诊断以及科学和工程数据库分析,因为这些学科产生了大量的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Compression strategy for handwritten gray level document images EKSS: An efficient approach for similarity search A semi-blind image watermarking based on Discrete Wavelet Transform and Secret Sharing Neuro Analytical hierarchy process (NAHP) approach for CAD/CAM/CIM tool selection in the context of small manufacturing industries ‘Robot-Cloud’: A framework to assist heterogeneous low cost robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1