Rotation Invariant Spatial Pyramid Matching for Image Classification

Priyabrata Karmakar, S. Teng, Guojun Lu, Dengsheng Zhang
{"title":"Rotation Invariant Spatial Pyramid Matching for Image Classification","authors":"Priyabrata Karmakar, S. Teng, Guojun Lu, Dengsheng Zhang","doi":"10.1109/DICTA.2015.7371303","DOIUrl":null,"url":null,"abstract":"This paper proposes a new Spatial Pyramid representation approach for image classification. Unlike the conventional Spatial Pyramid, the proposed method is invariant to rotation changes in the images. This method works by partitioning an image into concentric rectangles and organizing them into a pyramid. Each pyramidal region is then represented using a histogram of visual words. Our experimental results show that our proposed method significantly outperforms the conventional method.","PeriodicalId":214897,"journal":{"name":"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2015.7371303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper proposes a new Spatial Pyramid representation approach for image classification. Unlike the conventional Spatial Pyramid, the proposed method is invariant to rotation changes in the images. This method works by partitioning an image into concentric rectangles and organizing them into a pyramid. Each pyramidal region is then represented using a histogram of visual words. Our experimental results show that our proposed method significantly outperforms the conventional method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
旋转不变空间金字塔匹配图像分类
提出了一种新的空间金字塔表示方法用于图像分类。与传统的空间金字塔方法不同,该方法不受图像旋转变化的影响。这种方法的工作原理是将图像划分成同心矩形,并将它们组织成金字塔。然后使用视觉词的直方图表示每个金字塔区域。实验结果表明,该方法明显优于传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Illumination Compensated Segmentation of Microscopic Images of Activated Sludge Flocs Rotation Invariant Spatial Pyramid Matching for Image Classification Unsupervised Processing of Vehicle Appearance for Automatic Understanding in Traffic Surveillance A New Model for the Segmentation of Multiple, Overlapping, Near-Circular Objects An Analysis of Human Engagement Behaviour Using Descriptors from Human Feedback, Eye Tracking, and Saliency Modelling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1