Group recommendation algorithms for requirements prioritization

A. Felfernig, G. Ninaus
{"title":"Group recommendation algorithms for requirements prioritization","authors":"A. Felfernig, G. Ninaus","doi":"10.5555/2666719.2666733","DOIUrl":null,"url":null,"abstract":"Group recommendation is successfully applied in different domains such as Interactive Television, Ambient Intelligence, and e-Tourism. The focus of this paper is to analyze the applicability of group recommendation to requirements prioritization. We provide an overview of relevant group recommendation heuristics and report the results of an empirical study which focused on the analysis of the prediction quality of these heuristics.","PeriodicalId":193223,"journal":{"name":"2012 Third International Workshop on Recommendation Systems for Software Engineering (RSSE)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Third International Workshop on Recommendation Systems for Software Engineering (RSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5555/2666719.2666733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Group recommendation is successfully applied in different domains such as Interactive Television, Ambient Intelligence, and e-Tourism. The focus of this paper is to analyze the applicability of group recommendation to requirements prioritization. We provide an overview of relevant group recommendation heuristics and report the results of an empirical study which focused on the analysis of the prediction quality of these heuristics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
需求优先级的分组推荐算法
分组推荐在交互式电视、环境智能、电子旅游等领域得到了成功的应用。本文的重点是分析小组推荐对需求优先级排序的适用性。我们概述了相关的群体推荐启发式,并报告了一项实证研究的结果,该研究的重点是分析这些启发式的预测质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Group recommendation algorithms for requirements prioritization Interaction histories mining for software change guide Context-based recommendation to support problem solving in software development Optimizing a search-based code recommendation system Combining activity metrics and contribution topics for software recommendations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1