Image and Text fusion for UPMC Food-101 using BERT and CNNs

I. Gallo, Gianmarco Ria, Nicola Landro, Riccardo La Grassa
{"title":"Image and Text fusion for UPMC Food-101 using BERT and CNNs","authors":"I. Gallo, Gianmarco Ria, Nicola Landro, Riccardo La Grassa","doi":"10.1109/IVCNZ51579.2020.9290622","DOIUrl":null,"url":null,"abstract":"The modern digital world is becoming more and more multimodal. Looking on the internet, images are often associated with the text, so classification problems with these two modalities are very common. In this paper, we examine multimodal classification using textual information and visual representations of the same concept. We investigate two main basic methods to perform multimodal fusion and adapt them with stacking techniques to better handle this type of problem. Here, we use UPMC Food-101, which is a difficult and noisy multimodal dataset that well represents this category of multimodal problems. Our results show that the proposed early fusion technique combined with a stacking-based approach exceeds the state of the art on the dataset used.","PeriodicalId":164317,"journal":{"name":"2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVCNZ51579.2020.9290622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The modern digital world is becoming more and more multimodal. Looking on the internet, images are often associated with the text, so classification problems with these two modalities are very common. In this paper, we examine multimodal classification using textual information and visual representations of the same concept. We investigate two main basic methods to perform multimodal fusion and adapt them with stacking techniques to better handle this type of problem. Here, we use UPMC Food-101, which is a difficult and noisy multimodal dataset that well represents this category of multimodal problems. Our results show that the proposed early fusion technique combined with a stacking-based approach exceeds the state of the art on the dataset used.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于BERT和cnn的UPMC Food-101图像和文本融合
现代数字世界正变得越来越多模式。在互联网上,图像经常与文本联系在一起,因此这两种模式的分类问题非常普遍。在本文中,我们使用同一概念的文本信息和视觉表示来研究多模态分类。我们研究了两种主要的多模态融合的基本方法,并将它们与叠加技术相结合,以更好地处理这类问题。在这里,我们使用UPMC Food-101,这是一个困难和有噪声的多模态数据集,很好地代表了这类多模态问题。我们的结果表明,所提出的早期融合技术与基于堆栈的方法相结合,在所使用的数据集上超过了目前的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image and Text fusion for UPMC Food-101 using BERT and CNNs Predicting Cherry Quality Using Siamese Networks Wavelet Based Thresholding for Fourier Ptychography Microscopy Improving the Efficient Neural Architecture Search via Rewarding Modifications A fair comparison of the EEG signal classification methods for alcoholic subject identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1